看骰子的六个面需要多少次 – 潘登同学的概率论笔记
来源
前几天在刷视频的时候,发现了这样一道题
解答
简化为硬币问题
一般做法
- 假设两次就能看到硬币的正反面,那么出现的情况可能为"正反"or“反正”(另外两个为"正正",“反反”),概率为 1 2 \frac{1}{2} 21;
- 假设三次才能看到硬币的正反面,那么出现的情况可能为"正正反"or“反反正”(另外两个为"正正正",“反反反”),概率为 1 4 \frac{1}{4} 41(因为"正正","反反"出现的概率为 1 2 \frac{1}{2} 21);
- 以此类推…
n | 2 | 3 | ⋯ \cdots ⋯ | k |
---|---|---|---|---|
p | 1 2 \frac{1}{2} 21 | 1 4 \frac{1}{4} 41 | ⋯ \cdots ⋯ | 1 2 k − 1 \frac{1}{2^{k-1}} 2k−11 |
E n = 2 ∗ 1 2 + 3 ∗ 1 4 + ⋯ + k ∗ 1 2 k − 1 2 E n = 2 + 3 ∗ 1 2 + ⋯ + k ∗ 1 2 k − 2 下 减 上 E n = 2 + 1 2 + 1 4 + ⋯ + 1 2 k − 2 − k ∗ 1 2 k − 1 = 3 \begin{aligned} En &= 2*\frac{1}{2}+3*\frac{1}{4}+\dots+k*\frac{1}{2^{k-1}} \\ 2En&= 2+3*\frac{1}{2}+\dots+k*\frac{1}{2^{k-2}} \\ 下减上 \quad En &= 2 +\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{k-2}} - k*\frac{1}{2^{k-1}} = 3 \end{aligned} En2En下减上En=2∗21+3∗41+⋯+k∗2k−11=2+3∗21+⋯+k∗2k−21=2+21+41+⋯+2k−21−k∗2k−11=3
递推的方法
将
E
2
E_2
E2记为看到两名所用的平均次数,将
E
1
E_1
E1记为看到一面所用的平均次数
E
2
=
1
2
(
1
+
E
1
)
+
1
2
(
1
+
E
1
)
\begin{aligned} E_2 &= \frac{1}{2}(1+E_1) + \frac{1}{2}(1+E_1) \\ \end{aligned}
E2=21(1+E1)+21(1+E1)
其中前一个
1
2
(
1
+
E
1
)
\frac{1}{2}(1+E_1)
21(1+E1)表示第一次投到正面所需的平均次数(这个
E
1
E_1
E1表示投到反面所需的平均次数),后一个
1
2
(
1
+
E
1
)
\frac{1}{2}(1+E_1)
21(1+E1)表示第一次投到反面所需的平均次数(这个
E
1
E_1
E1表示投到正面所需的平均次数);
而
E
1
E_1
E1如果表示投到反面所需的平均次数
E
1
=
1
2
+
1
2
(
1
+
E
1
)
E_1 = \frac{1}{2} + \frac{1}{2}(1+E_1)
E1=21+21(1+E1)
其中前一个
1
2
\frac{1}{2}
21表示第一次就投到反面,后一个
1
2
E
1
\frac{1}{2} E_1
21E1表示第一次投到正面;
可以从中解出
E
1
=
2
E
2
=
3
E_1 = 2 \\ E_2 = 3
E1=2E2=3
回到骰子问题
如果对于骰子仍采用一般解法,那会非常复杂;故采取递推方式
E
6
=
1
6
(
1
+
E
5
)
+
⋯
+
1
6
(
1
+
E
5
)
=
(
1
+
E
5
)
E
5
=
1
6
(
1
+
E
5
)
+
5
6
(
1
+
E
4
)
=
6
5
+
E
4
E
4
=
2
6
(
1
+
E
4
)
+
4
6
(
1
+
E
3
)
=
6
4
+
E
3
E
3
=
3
6
(
1
+
E
3
)
+
3
6
(
1
+
E
2
)
=
6
3
+
E
2
E
2
=
4
6
(
1
+
E
2
)
+
3
6
(
1
+
E
1
)
=
6
2
+
E
1
E
1
=
5
6
(
1
+
E
1
)
+
1
6
\begin{aligned} E_6 &= \frac{1}{6}(1+E_5) + \dots + \frac{1}{6}(1+E_5) \\ &=(1+E_5) \\ E_5 &= \frac{1}{6}(1+E_5) + \frac{5}{6}(1+E_4) \\ &=\frac{6}{5} + E_4 \\ E_4 &= \frac{2}{6}(1+E_4) + \frac{4}{6}(1+E_3) \\ &=\frac{6}{4} + E_3 \\ E_3 &= \frac{3}{6}(1+E_3) + \frac{3}{6}(1+E_2) \\ &=\frac{6}{3} + E_2 \\ E_2 &= \frac{4}{6}(1+E_2) + \frac{3}{6}(1+E_1) \\ &=\frac{6}{2} + E_1 \\ E_1 &= \frac{5}{6}(1+E_1) + \frac{1}{6} \\ \end{aligned}
E6E5E4E3E2E1=61(1+E5)+⋯+61(1+E5)=(1+E5)=61(1+E5)+65(1+E4)=56+E4=62(1+E4)+64(1+E3)=46+E3=63(1+E3)+63(1+E2)=36+E2=64(1+E2)+63(1+E1)=26+E1=65(1+E1)+61
解得
E
1
=
6
E
6
=
1
+
6
5
+
6
4
+
6
3
+
6
2
+
6
E_1 = 6 \\ E_6 = 1 + \frac{6}{5} + \frac{6}{4} + \frac{6}{3} + \frac{6}{2} + 6 \\
E1=6E6=1+56+46+36+26+6