计蒜客——家谱(深度搜索)

家谱,又称族谱、宗谱等,是一种以表谱形式,记载一个家族的世系繁衍及重要人物事迹的书。皇帝的家谱称玉牒,如新朝玉牒、皇宋玉牒。它以记载父系家族世系、人物为中心,由正史中的帝王本纪及王侯列传、年表等演变而来。

家谱是一种特殊的文献,就其内容而言,是中国五千年文明史中具有平民特色的文献,记载的是同宗共祖血缘集团世系人物和事迹等方面情况的历史图籍。家谱属珍贵的人文资料,对于历史学、民俗学、人口学、社会学和经济学的深入研究,均有其不可替代的独特功能。

这一天蒜头君拿到了自己家的家谱,蒜头君便想知道,在自己家的家谱中,每位祖先有多少直系后代(直系后代包括他的孩子和他孩子的直系后代)。但是家族历史源远流长,家谱实在太庞大了,自己一个人完全数不过来。热心的你便自告奋勇帮蒜头君写一个程序,来统计每位祖先有多少直系后代。

输入格式
输入的第一行有一个整数 n(1≤n≤100000),表示家谱中的总人数。

接下来读入 n−1 行,每行有两个整数 x(1≤x≤n), y(1≤y≤n),表示 x 是 y 的父母。

输出格式
输出 n 行,每行有一个整数,表示第 i 个人有多少个直系后代。

样例输入

4
1 2
1 3
2 4

样例输出

3 
1
0
0

解题思路,用vector数组存每个数字的后代,找出界家谱老祖宗即——根节点,从老祖宗开始dfs,记录每个孩子的后代,并在每个孩子的递归处返回后代数+1,最终连加得到总的后代数

#include <cstdio>
using namespace std;
#include <vector>

int n;
vector<int> son[100005];
bool f[100005];  //找根节点的标记数组
int ans[100005];  //存储结果

int dfs(int r) {
	int ret = 0;
	for (int i = 0; i < son[r].size(); ++i) {
		ret += dfs(son[r][i]);  //对每个孩子进行dfs,连加,最终得总的直系后代数
	}
	ans[r] = ret;
	return ret + 1;   //返回的结果要包括自己,例如左孩子的所有孩子加上自己就是左子树的结点个数
}

int main() {
	scanf("%d", &n);
	for (int i = 0; i < n - 1; ++i) {
		int a, b;
		scanf("%d %d", &a, &b);
		son[a].push_back(b);
		f[b] = true;  //说明b已经是别人的孩子
	}
	int root = 0;
	for (int i = 1; i <= n; ++i) { 
		if (!f[i]) {   //找到根节点
			root = i;
			break;
		}
	}
	dfs(root);
	for (int i = 1; i <= n; ++i) {
		printf("%d\n", ans[i]);
	}
	while (1);
	return 0;
}

### 家谱管理系统的实现 #### 使用二叉树的数据结构来构建家谱管理系统 在家谱管理系统的设中,可以采用二叉树作为主要数据结构。每个节点代表一位家庭成员,左子节点通常用于存储父亲的信息,右子节点则用于存储母亲的信息[^1]。 对于输入一棵二叉树的括号表示法并完成树的构建这一需求,可以通过解析字符串的方式逐步创建各个节点及其连接关系。具体来说,在遇到'('时进入下一层级;当碰到')'时返回上层继续处理其他分支直到整个表达式被完全解析完毕为止[^2]。 为了展示如何通过编程语言实现上述功能,下面给出一段Python代码片段: ```python class TreeNode: def __init__(self, value=None): self.value = value self.left = None # Father node self.right = None # Mother node def build_tree(expression): stack = [] current_node = root = TreeNode() i = 0 while i < len(expression): char = expression[i] if char == '(': new_node = TreeNode() if not root.value: root = new_node current_node = root elif not current_node.left: current_node.left = new_node current_node = new_node elif not current_node.right: current_node.right = new_node current_node = new_node elif char.isalpha(): start_index = i while i < len(expression) and (expression[i].isalpha() or expression[i].isspace()): i += 1 name = expression[start_index:i].strip() current_node.value = name continue elif char == ')': current_node = stack.pop() if stack else root if current_node != root: stack.append(current_node) i += 1 return root ``` 这段代码实现了从给定的家庭成员名称列表(以特定格式呈现)到实际二叉树对象之间的转换过程。其中`build_tree()`函数接收一个描述家族关系链路形式化后的字符串参数,并据此建立起相应的二叉树实例。 此外,还需要考虑遍历操作以及查询某位祖先的功能实现。这里提供了一个简单的后序遍历递归版本和先序非递归版的例子: ```python # 后序遍历(Left->Right->Root) def postorder_traversal_recursive(node): if node is not None: postorder_traversal_recursive(node.left) postorder_traversal_recursive(node.right) print(f"{node.value}", end=" ") # 先序遍历(Root->Left->Right),使用栈模拟非递归方式 def preorder_traversal_nonrecursive(root): if root is None: return [] result = [] stack = [root] while stack: curr = stack.pop() result.append(curr.value) if curr.right is not None: stack.append(curr.right) if curr.left is not None: stack.append(curr.left) for item in result: print(item, end=' ') ``` 最后,针对指定家谱中的某一成员输出其所有长辈的需求,则可通过查找目标节点路径上的父辈节点集合来达成目的。这涉及到回溯算法的应用,即沿着已知后代向上追溯直至根部位置,期间记录经过的所有前驱结点即可获得完整的直系亲属链条信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值