基于内容推荐算法-Java电商商品推荐案例

基于内容推荐算法-Java电商商品推荐案例

import java.util.*;

// 商品类
class Item {
    int id;
    String name;
    Set<String> features; // 商品特征集合

    public Item(int id, String name, Set<String> features) {
        this.id = id;
        this.name = name;
        this.features = features;
    }

    // 判断商品是否包含某个特征
    public boolean hasFeature(String feature) {
        return features.contains(feature);
    }
}

// 商品推荐器类
class ItemRecommender {
    List<Item> items;

    public ItemRecommender(List<Item> items) {
        this.items = items;
    }

    // 基于内容的推荐算法
    public List<Item> recommendItems(Set<String> userPreferences) {
        List<Item> recommendedItems = new ArrayList<>();

        for (Item item : items) {
            boolean hasCommonFeature = false;
            for (String preference : userPreferences) {
                if (item.hasFeature(preference)) {
                    hasCommonFeature = true;
                    break;
                }
            }
            if (hasCommonFeature) {
                recommendedItems.add(item);
            }
        }

        return recommendedItems;
    }
}

public class Main {
    public static void main(String[] args) {
        // 创建一些商品
        Item item1 = new Item(1, "手机", new HashSet<>(Arrays.asList("智能", "高清摄像", "大内存")));
        Item item2 = new Item(2, "平板电脑", new HashSet<>(Arrays.asList("轻便", "高清屏幕", "长续航")));
        Item item3 = new Item(3, "耳机", new HashSet<>(Arrays.asList("蓝牙", "降噪", "高保真")));

        // 商品列表
        List<Item> items = new ArrayList<>();
        items.add(item1);
        items.add(item2);
        items.add(item3);

        // 用户喜好的特征集合
        Set<String> userPreferences = new HashSet<>(Arrays.asList("智能", "大内存", "高清屏幕"));

        // 创建商品推荐器
        ItemRecommender recommender = new ItemRecommender(items);

        // 获取推荐结果
        List<Item> recommendedItems = recommender.recommendItems(userPreferences);

        // 输出推荐结果
        System.out.println("为用户推荐的商品是:");
        for (Item item : recommendedItems) {
            System.out.println(item.name);
        }
    }
}

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
基于内容推荐算法可以使用TF-IDF(词频-逆文档频率)算法实现。这里提供一个简单的Java代码实现: ```java import java.util.*; public class ContentBasedRecommendation { // 计算文档的TF-IDF值 public static Map<String, Double> calculateTFIDF(List<String> document, List<List<String>> corpus) { Map<String, Double> tfidfMap = new HashMap<>(); for (String word : document) { double tf = calculateTF(word, document); double idf = calculateIDF(word, corpus); double tfidf = tf * idf; tfidfMap.put(word, tfidf); } return tfidfMap; } // 计算词的TF值 public static double calculateTF(String word, List<String> document) { int count = 0; for (String w : document) { if (w.equals(word)) { count++; } } return (double) count / document.size(); } // 计算词的IDF值 public static double calculateIDF(String word, List<List<String>> corpus) { int count = 0; for (List<String> document : corpus) { if (document.contains(word)) { count++; } } return Math.log10((double) corpus.size() / count); } // 计算文档之间的相似度 public static double calculateSimilarity(Map<String, Double> doc1, Map<String, Double> doc2) { double dotProduct = 0.0; double normDoc1 = 0.0; double normDoc2 = 0.0; for (Map.Entry<String, Double> entry : doc1.entrySet()) { String word = entry.getKey(); double tfidf1 = entry.getValue(); double tfidf2 = doc2.getOrDefault(word, 0.0); dotProduct += tfidf1 * tfidf2; normDoc1 += tfidf1 * tfidf1; } for (Map.Entry<String, Double> entry : doc2.entrySet()) { double tfidf2 = entry.getValue(); normDoc2 += tfidf2 * tfidf2; } return dotProduct / (Math.sqrt(normDoc1) * Math.sqrt(normDoc2)); } public static void main(String[] args) { // 示例文档 List<String> doc1 = Arrays.asList("apple", "banana", "orange", "pear"); List<String> doc2 = Arrays.asList("apple", "banana", "orange"); List<String> doc3 = Arrays.asList("apple", "banana", "pear"); List<String> doc4 = Arrays.asList("apple", "pear"); // 示例文档集合 List<List<String>> corpus = Arrays.asList(doc1, doc2, doc3, doc4); // 计算文档的TF-IDF值 Map<String, Double> tfidf1 = calculateTFIDF(doc1, corpus); Map<String, Double> tfidf2 = calculateTFIDF(doc2, corpus); Map<String, Double> tfidf3 = calculateTFIDF(doc3, corpus); Map<String, Double> tfidf4 = calculateTFIDF(doc4, corpus); // 计算文档之间的相似度 double sim12 = calculateSimilarity(tfidf1, tfidf2); double sim13 = calculateSimilarity(tfidf1, tfidf3); double sim14 = calculateSimilarity(tfidf1, tfidf4); System.out.println("相似度12:" + sim12); System.out.println("相似度13:" + sim13); System.out.println("相似度14:" + sim14); } } ``` 以上代码实现了一个简单的基于内容推荐算法,以示例文档为例计算文档之间的相似度。实际应用中,可以使用更复杂的文本处理技术和算法来提高推荐效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值