242.有效的字母异位词
题意:给定两个字符串 s 和 t ,编写一个函数来判断 t 是否是 s 的字母异位词。
示例 1: 输入: s = "anagram", t = "nagaram" 输出: true
示例 2: 输入: s = "rat", t = "car" 输出: false
说明: 你可以假设字符串只包含小写字母。
先看暴力的解法,两层for循环,同时还要记录字符是否重复出现,很明显时间复杂度是 O(n^2)。
暴力的方法这里就不做介绍了,直接看一下有没有更优的方式。
思路:数组其实就是一个简单哈希表
数组其实就是一个简单哈希表,而且这道题目中字符串只有小写字符,那么就可以定义一个数组,来记录字符串s里字符出现的次数。
如果对哈希表的理论基础关于数组,set,map不了解的话可以看这篇:关于哈希表,你该了解这些!(opens new window)
需要定义一个多大的数组呢,定一个数组叫做record,大小为26 就可以了,初始化为0,因为字符a到字符z的ASCII也是26个连续的数值。
第一次for循环走的就是字符串s,统计每个字符出现了多少次,在数据进行++操作;
第二次for循环走的就是字符串s,统计每个字符出现了多少次,在数据进行--操作;
第三次循环判断的是:数组是不是每一个都为0;如果都为0,则表示t和s中字符出现的次数一样多,则返回true,如果不为0,则表示的是t和s有某个字符出现的次数不一致,则返回True
class Solution {
public boolean isAnagram(String s, String t) {
if(s.length()==0||s==null||t.length()==0||t==null||s.length() != t.length()){
return false;
}
int[] array = new int[26];
for(int i =0;i < s.length();i++){
array[s.charAt(i) -'a']++;
}
for(int i =0;i < t.length();i++){
array[t.charAt(i) -'a']--;
}
for(int i =0;i < array.length;i++){
if(array[i] !=0){
return false;
}
}
return true;
}
}
349. 两个数组的交集
题意:给定两个数组,编写一个函数来计算它们的交集。
说明: 输出结果中的每个元素一定是唯一的。 我们可以不考虑输出结果的顺序。
思路:输出结果中的每个元素一定是唯一的,也就是说输出的结果的去重的, 同时可以不考虑输出结果的顺序。
Set集合是自动去重的,所以我们可以直接使用Set方法来进行。
首先:创建2个set集合,一个用来存放nums1的去重数据,一个放交集的数据。
在进行第二个for循环的同时,我们要进行判断,nums2的数据有没有存在集合set里面,如果存在,则表明该数据是和nums1存在交集,则放入结果集中,如果不存在,则跳过,进行下一数据进行判断。
题目的返回结果是数组类型的,所以最后创建一个数组,将set集合的数据填充到数组中,返回数组。
Java代码如下:
class Solution {
public int[] intersection(int[] nums1, int[] nums2) {
if(nums1==null || nums2 == null||nums1.length==0||nums2.length==0){
return new int[0];
}
Set<Integer> set = new HashSet<>();
Set<Integer> reset = new HashSet<>();
for(int num :nums1){
set.add(num);
}
for(int num2:nums2){
if(set.contains(num2)){
reset.add(num2);
}
}
int[] array = new int[reset.size()];
int result =0;
for(int a : reset){
array[result++] = a;
}
return array;
}
}
202.快乐数
实现内容:编写一个算法来判断一个数 n 是不是快乐数。
题意:定义为:对于一个正整数,每一次将该数替换为它每个位置上的数字的平方和,然后重复这个过程直到这个数变为 1,也可能是 无限循环 但始终变不到 1。如果 可以变为 1,那么这个数就是快乐数。
举例:
如果 n 是快乐数就返回 True ;不是,则返回 False 。
示例:
输入:19
输出:true
解释:
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1;
思路:题目中说了会 无限循环,那么也就是说求和的过程中,sum会重复出现,如果sum重复出现了,则表明该数据已经存在了,后续的计算是一样的结果,此时应该跳出循环。
1.我们要创建一个set集合,用来保存每一次N的计算数据。
2.在编写一个方法,输入N,返回各个位数平方和的结果。
3.在方法中进行判断,当返回的N不为1和set集合已经存在相同的数据时,则结束while循环,返回结果判断n 是不是等于1.
Java代码如下:
class Solution {
public boolean isHappy(int n) {
Set<Integer> set = new HashSet<>();
while (n !=1 && !set.contains(n)) {
set.add(n);
n = getSum(n);
}
return n == 1;
}
private int getSum(int n ){
int result = 0;
while (n>0){
int temp = n %10;
result += temp * temp;
n = n/10;
}
return result;
}
}
1.2数之和
实现内容:给定一个数组,一个值,判断这个数组是否存在2个数据相加等于输入值,如果存在,返回数组对应值的索引。
给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
思路:最简单的肯定是for循环,但是能不能考虑别的思路来进行统计。
思路1:2层for循环解决。
思路2:我就需要一个集合来存放我们遍历过的元素,然后在遍历数组的时候去询问这个集合,某元素是否遍历过,也就是 是否出现在这个集合。
那么我们就应该想到使用哈希法了。
因为本地,我们不仅要知道元素有没有遍历过,还要知道这个元素对应的下标,需要使用 key value结构来存放,key来存元素,value来存下标,那么使用map正合适。
再来看一下使用数组和set来做哈希法的局限。
- 数组的大小是受限制的,而且如果元素很少,而哈希值太大会造成内存空间的浪费。
- set是一个集合,里面放的元素只能是一个key,而两数之和这道题目,不仅要判断y是否存在而且还要记录y的下标位置,因为要返回x 和 y的下标。所以set 也不能用。
此时就要选择另一种数据结构:map ,map是一种key value的存储结构,可以用key保存数值,用value在保存数值所在的下标。
具体代码如下:
class Solution {
public int[] twoSum(int[] nums, int target) {
int[] array = new int[2];
Map<Integer,Integer> map = new HashMap<>();
for(int i =0;i < nums.length;i++){
if(map.containsKey(target-nums[i])){
array[0]= map.get(target-nums[i]);
array[1] = i;
break;
}
map.put(nums[i],i);
}
return array;
}
}