每日论文解读(day4):Tristable property and the high stiffness analysis of Kresling pattern origami [1]

        首先非常感谢大哥的付出和贡献,该论文于2023年3月发表在IJMS。

        先说结论:本文主要描述了对“Kresling”折纸结构的新发现和研究。简单来说,之前我们认为Kresling折纸只有两种能稳定保持的形态(即双稳态),但经过该文的理论推导和实际的折叠实验后,我们发现它实际上可以稳定地保持三种不同的形态(也就是三稳态性)。

        接下来介绍Kresling折纸的几何构型部分,因为本节旨在建立一个统一的几何描述标准,分别是三角化圆柱形折纸和三角化圆锥形折纸,所以这里将会详细描述其几何基本构型。

fig.1  Kresling折纸的几何形状 [1]

1、三角化圆柱形折纸

1.1 基本构型与参数

  • 基本结构
    圆柱形折纸由重复的三角形阵列组成,每个单元包含一个谷折痕和一个山折痕。图1(a)展示了平板状态的折痕图样,而图1(b)则描述了折叠过程。

  • 主要参数

    • n:底面多边形的边数。
    • a:底(或顶)多边形的边长。
    • α 和 β:定义折纸折叠过程中各折痕比例的两个关键角度。

1.2 折叠状态下的折痕长度

        在平面状态经过折叠后,单元内各条折痕的设计长度由下式给出:

1.3 折叠运动的描述    

        折叠过程采用三个变量来描述:

  • 高度 h:顶面与底面之间的垂直距离。
  • 扭转角 ϕ:描述折叠过程中顶面和底面多边形相对旋转的角度。
  • 半径 R:底面(或外接圆)的半径。

        为了计算折叠过程中的折痕实际长度,构建了如下坐标系并定义单元内四个顶点的位置:

        通过欧式距离公式得到各折痕的实际长度:

2、三角化圆锥形折纸

2.1 基本构型与参数

        圆锥形折纸与圆柱形相似,但在几何描述上引入了以下额外参数:

  • m:表示顶面多边形与底面多边形边长的比例,满足 0<m<1。当 m=1 时,结构变为圆柱形。

        此外,基本参数包括:

  • n:侧边数。
  • a:底面多边形的边长。
  • α 和 β:定义折痕比例的角度。

2.2 折叠状态下的折痕长度

        圆锥形折纸在折叠态下的各折痕长度由以下公式给出:

2.3 折叠运动的描述   

        折叠运动的描述需要考虑顶面和底面两个多边形的外接圆半径:

  • 底面半径为 R
  • 顶面半径为 r(由比例 m 确定)

        同样地,构建单元内顶点的坐标:

        因此,折痕的实际长度为:

3、两种结构之间的转换

        圆锥形折纸相比于圆柱形多了参数 m 和 r。其中,r 与 m 有关,满足当 m=1 时,r=R(即变为圆柱形)。

        在实际折叠过程中,一般选取第二稳定态(此处对于圆锥形折纸)作为参考。在图1(c)中,此时认为,折痕 AD 与 BD 的实际长度分别等于设计大小 L_{AD}​ 和 L_{BD}​,根据这一假设,我们可得:

        联立方程,解得第二稳定态下的扭转角 \phi_0 以及满足余弦函数的取值范围:

        最终得到参数 m 的取值范围:

4、总结

        论文其他内容将在下面以总结的形式展开,论文之中有以下几点值得我们学习和借鉴:

1)几何描述与统一标准
        论文首先建立了一个统一的几何描述标准,将三角化的圆柱形折纸(cylindrical origami)和锥形折纸(conical origami)统一起来研究。作者详细推导了两种结构的基本几何参数(侧边数、底边长度、角度等)以及折叠过程中的主要变量(高度、扭转角、半径等),这为后续动力学和能量分析奠定了基础。

2)发现与验证三稳态特性
        传统上,Kresling 折纸被认为只具备双稳态特性,然而该论文通过理论分析和实际折叠试验发现,该结构在折叠过程中实际上存在三个稳定状态。第三稳定状态的出现主要归因于折痕线(特别是谷折痕 BD)的弧形化及整体单元的外弯行为。论文中利用理论模型详细描述了折痕线由直线变为弧线的过程,从而解释了第三稳定状态的形成机制。

3)改进的桁架模型

        针对传统桁架模型在描述折纸结构能量变化时的不足,论文提出了修正的桁架模型。主要区别有:

  • 在第一阶段(从平面状态到第二稳定状态),直接利用折痕线的直线距离来计算能量变化;
  • 在第二阶段(从第二稳定状态到第三稳定状态),则引入了折痕线弧形长度的计算,将其作为变形的度量,从而更准确地反映实际结构中的能量跃迁和非线性恢复力。
    这种模型的改进不仅可以使能量表观展现出明显的能量跃变,还验证了第三稳定状态的高刚性的特性。

4)能量表观与动态响应分析
        论文通过非维化处理,得到了折纸结构在不同折叠状态下的能量表观。能量分析显示,在折叠过程中存在突变点,这一点与第二和第三稳定状态之间的转换密切相关。研究揭示,当折纸结构进入第三稳定状态时,由于谷折痕的弧形化和单元整体外弯,会产生显著的非线性恢复力,从而使得该状态具有极高的刚性和载荷承受能力。

5、引用

[1] Xiaolei Wang et al., ‘Tristable Property and the High Stiffness Analysis of Kresling Pattern Origami’, International Journal of Mechanical Sciences, 256 (2023), p. 108515, doi:10.1016/j.ijmecsci.2023.108515.

解读不能代替原文,好的论文需要您细细品读。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值