CINTA作业五:循环群

1、请心算列举出群 Z10 的所有生成元。

< 2 > = { 2 , 4 , 8 , 6 } < 3 > = { 3 , 9 , 7 , 1 } < 7 > = { 7 , 9 , 3 , 1 } < 8 > = { 8 , 4 , 2 , 6 } <2>=\{2,4,8,6\} \\<3>=\{3,9,7,1\} \\<7>=\{7,9,3,1\} \\<8>=\{8,4,2,6\} <2>={2,4,8,6}<3>={3,9,7,1}<7>={7,9,3,1}<8>={8,4,2,6}

2. 群 Z_17^* 有多少个生成元?已知 3 是其中一个生成元,请问 9 和 10 是否生成元?

ϕ(16)=8个生成元,已知 3 是其中一个生成元, 3 2 = 9 3^2=9 32=9
o r d ( 9 ) = 16 / g c d ( 2 , 16 ) = 8 ≠ 16 ord(9)=16/gcd(2,16)=8≠16 ord9=16/gcd2,16=8=16,所以9不是生成元。
< 10 > = { 10 , 15 , 14 , 4 , 6 , 9 , 5 , 16 , 7 , 2 , 3 , 13 , 11 , 8 , 12 , 1 } <10>=\{10,15,14,4,6,9,5,16,7,2,3,13,11,8,12,1\} <10>={10,15,14,4,6,9,5,16,7,2,3,13,11,8,12,1} o r d ( 10 ) = 16 ord(10)=16 ord10=16
或者 3 3 m o d 17 = 10 3^3mod17=10 33mod17=10 o r d ( 10 ) = 16 / g c d ( 3 , 16 ) = 16 ord(10)=16/gcd(3,16)=16 ord10=16/gcd3,16=16
所以10是生成元。

3、证明:如果群G没有非平凡子群,则群G是循环群。

G = { e } , 令 H = { e k : k ∈ Z } 故 : H = { e } , 故 H 为 循 环 群 , 又 G = H , 则 G 是 循 环 群 G=\{e\},令H=\{e^k:k∈Z\} \\故:H=\{e\},故H为循环群,又G=H,则G是循环群 G={e}H={ek:kZ}H={e}HG=HG

4、证明:有限循环群G中任意元素的阶都整除群G的阶

设群 G = < g > G=<g> G=<g>,是阶为n的循环群,若 h = g k h=g^k h=gk,则h的阶为n/d,其中d为gcd(k,n)
由于gcd(k,n)为整数,故得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值