- 博客(19)
- 收藏
- 关注
原创 CINTA 作业九
1.证明命题 11.2。要证 QRpQR_pQRp 在乘法上成群,验证 QRpQR_pQRp 在群公理上是否成立即可。封闭性:由命题 11.3 和 QRpQR_pQRp 的定义我们可以得知 QR*QR = QR (mod p),那么显然乘法是封闭的。结合律继承 Zp∗Z_p^*Zp∗ 的乘法,显然。单位元:由 a212≡12a2≡a2 (mod p)a^21^2 \equiv 1^2a^2 \equiv a^2 \ (mod \ p)a212≡12a2≡a2&nbs
2021-12-12 21:41:44 455 1
原创 CINTA 作业八
1.手动计算 20002019(mod 221)2000^{2019} (mod \ 221)20002019(mod 221),不允许使用电脑或者其他电子设备。对于原题目 200020192000^{2019}20002019 (mod 221),我们由 CRT 可以将问题转换成求解同余方程组:{x≡20002019(mod 13)x≡20002019(mod 17)\left\{\begin{matrix}x \equiv 2000^{2019} (mod \
2021-12-05 23:34:30 491 3
原创 CINTA 作业七
由题,要证 G 是 H1H2H_1H_2H1H2 的正规子群,我们要分两步证明:首先证明 H1H2H_1H_2H1H2 是 G 的子群,接着再验证正规子群的性质。证明如下。封闭性:首先,要认识到 H1H2H_1H_2H1H2 可解释成 H1H2={h1H2,∀h1∈H1}H_1H_2 = \{ h_1H2,\forall h_1 \in H_1\}H1H2={h1H2,∀h1∈H1} ,即以 H1H_1H1 中的元素为代表元的 H2H_2H2 的陪集中所有元素的集合。...
2021-11-17 14:07:34 147 2
原创 CINTA 作业六
1.设 G 是 群,H 是 G 的子群。任取 g1,g2 属于 G, 则 g1H = g2H 当且仅当 g-1g2 属于 H。证明:充分性由于 g1H=g2H,g_1H = g_2H,g1H=g2H, 即 ∃h1,h2∈H,\exist h_1,h_2 \in H,∃h1,h2∈H, 使 g1h1=g2h2,g_1h_1 = g_2h_2,g1h1=g2h2,则可得 g1−1g2=h1h2−1∈Hg_1^{-1}g_2 = h_1h_2^{-1} \in Hg1−1g2=h1h
2021-11-02 22:12:27 294
原创 CINTA作业五
1. 请心算列举出群 Z10 的所有生成元。Z10Z_{10}Z10 所有生成元为 1, 3, 7, 9 。 2. 群 Z_17^* 有多少个生成元?已知 3 是其中一个生成元,请问 9 和 10 是否生成元?Z17Z_{17}Z17 的阶为 16 ,故其生成元个数为 ϕ(16)=7\phi(16) = 7ϕ(16)=7,容易得到 3 是 Z17Z_{17}Z17 的生成元,那么由命题 7.5, 对于9=32,9 = 3^2,9=32, gcd(2, 16) = 2, 故 9 的
2021-11-02 20:46:49 813
原创 CINTA 作业四
1.证明命题6.6证明:由于群公理,我们可以得到对于 ∀a∈G,∃a−1\forall a \in G, \exist a^{-1}∀a∈G,∃a−1 使 aa−1=a−1a=ea a^{-1} = a^{-1} a = eaa−1=a−1a=e,则对于 ba=caba = caba=ca,我们在两边同时乘上 a−1a^{-1}a−1,即 baa−1=caa−1,故b=cb a a^{-1} = c a a^{-1},故 b = cbaa−1=caa−1,故b=c,同理 a−1ab=a−1ac,得
2021-10-26 19:02:18 207 1
原创 CINTA 作业三
1、实现求乘法逆元的函数,给定a和m,求a模m的乘法逆元,无解时请给出无解提示,并且只返回正整数。进而给出求解同余方程(ax = b mod m)的函数,即给定a,b,m,输出满足方程的x,无解给出无解提示。//invs 函数//输入:两个整数 a 和 m//输出:a 在 模 m 下的乘法逆元,当无解的时候返回 0//svlCeq函数//输入:同余方程式 ax \equiv b (mod m) 中的 三个整型系数 a,b,m 和一个用于存储 x 的所有解的整型数组的地址//输出:返回同余方程式
2021-10-12 21:29:51 231 3
原创 CINTA 作业二
1、给出Bezout定理的完整证明。证明:我们不妨构造一个集合 $ S = \{ ax + by:x,y \in \Z 且 ax+by > 0 \}$由良序定理,我们可以得到该非空集合 S 中必然有一个最小数 $ d = ar + bs, r,s \in \Z $。我们认为它是 a 和 b 最大公因子,以下我们做出证明。令 a = dq + r0,0<= r0 < d 那么有 r0 = a - dq。将 d = ar + bs 代入我们可以得到r0=a−(ar+bs)q
2021-09-21 23:50:20 305 2
原创 CINTA 作业一
1.用C语言实现一种迭代版本的简单乘法。如下 multiply(int na, int nb)函数即为所求函数。/* 简单乘法器(程序默认输入,输出均不会发生溢出) * 输入:两个整数 na, nb * 输出:na * nb 的结果 */#include<stdio.h>typedef long long ll;ll multiply(int na, int nb){ ll ans = 0; do { if (nb & 1) ans += na; na
2021-09-12 23:00:07 138 2
原创 《CINTA》第一章 课后练习题
第一章练习题 程序题1.用C语言编程实现判断输入为偶数的函数,即如果输入为偶数,返回True, 否则返回 False。程序中 isOdd(int num) 函数正是所求函数,自行选择阅读。/* 一个测试奇偶性的程序 * 输入:一个不大于 MAXNUM 的整数(本程序仅运行于64位且 int 类型是 32 位的计算机) * 输出:带有对奇偶性进行判断的语句 */#include<stdio.h>enum { true = 1, false = 0 };cons
2021-07-18 22:22:48 258
原创 《CINTA》课程学习的一些了解和参考
前言 以下的一些言论是本学渣在本科期间学习完一学期的《CINTA》课程之后的一些吐槽,尽管雷人,但情况属实。希望阅读到这里的朋友能在学习过程中早点意识到这些问题,少走一些弯路。 什么是《CINTA》? CINTA,或许你对这五个字最初的认识会是:这是一门面向计算机的数学。但是在接下来一学期的学习过程中,你可能会逐渐模糊这个认识。在一两个月之后,你的认识或许会变成这样:这是一门面向考试的玄学。在对于计算机的了解微乎甚微的情况下,我认为把计算机和你现在学习的数学联系和结
2021-07-14 13:23:14 633 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人