CINTA作业七:同态

3

依题意:对任意 g ∈ G g∈G gG,有 g H 1 = H 1 g g \mathbb H_1=\mathbb H_1 g gH1=H1g g H 2 = H 2 g g \mathbb H_2=\mathbb H_2 g gH2=H2g
故有 g h 1 = h 1 g gh_1=h_1g gh1=h1g g h 2 = h 2 g gh_2=h_2g gh2=h2g
对任意 h 1 ∈ H 1 , h 2 ∈ H 2 h_1∈\mathbb H_1,h_2∈\mathbb H_2 h1H1h2H2,有:
g h 1 h 2 = h 1 g h 2 = h 1 h 2 g ∈ H 1 H 2 g gh_1h_2=h_1gh_2=h_1h_2g∈\mathbb H_1\mathbb H_2g gh1h2=h1gh2=h1h2gH1H2g

h 1 h 2 g = h 1 g h 2 = g h 1 h 2 ∈ H 1 H 2 g h_1h_2g=h_1gh_2=gh_1h_2∈\mathbb H_1\mathbb H_2g h1h2g=h1gh2=gh1h2H1H2g

H 1 H 2 是 群 G 的 正 规 子 群 \mathbb H_1\mathbb H_2是群G的正规子群 H1H2G

5

依题意:
充分性:
ϕ ( a ⋅ b ) = ϕ ( a ) ∘ ϕ ( b ) ϕ(a·b)=ϕ(a)∘ϕ(b) ϕ(ab)=ϕ(a)ϕ(b)
即: ( a b ) 2 = a 2 ⋅ b 2 (ab)^2=a^2·b^2 (ab)2=a2b2
即: a b ⋅ a b = a 2 ⋅ b 2 ab·ab=a^2·b^2 abab=a2b2
由消去律可得: b ⋅ a = a ⋅ b b·a=a·b ba=ab
故:G是阿贝尔群

必要性:
G是阿贝尔群,则有: b ⋅ a = a ⋅ b b·a=a·b ba=ab
ϕ ( a ⋅ b ) = ( a b ) 2 = a b ⋅ a b = a b ⋅ b a = a ⋅ b 2 ⋅ a = a ⋅ a ⋅ b 2 = a 2 ⋅ b 2 = ϕ ( a ) ∘ ϕ ( b ) ϕ(a·b)=(ab)^2=ab·ab=ab·ba=a·b^2·a=a·a·b^2=a^2·b^2=ϕ(a)∘ϕ(b) ϕ(ab)=(ab)2=abab=abba=ab2a=aab2=a2b2=ϕ(a)ϕ(b)
故:ϕ是一种群同态

7

因为[G:H]=2,所以对任意g∈G,分有两种情况。
①g∈H时, g H = H = H g gH=H=Hg gH=H=Hg,得证
②g∉H时, ∀ h ∈ H ∀h∈H hH,有 g h = h 1 ′ ∉ H 但 ∈ G , h g = h 2 ′ ∉ H 但 ∈ G gh=h_1'∉H但∈G,hg=h_2'∉H但∈G gh=h1/HGhg=h2/HG
∃ H ′ = G − H , 使 得 h 1 ′ , h 2 ′ ∈ H ′ , 则 有 g H ∈ H ′ , H g ∈ H ′ ∃H'=G-H,使得h_1',h_2'∈H',则有gH∈H',Hg∈H' H=GH使h1,h2HgHHHgH
∀ h ′ ∈ H ′ , ∃ h 1 , h 2 ∈ H , 使 h ′ = g h 1 ∈ g H , h ′ = h 2 g ∈ H g ∀h'∈H',∃h_1,h_2∈H,使h'=gh_1∈gH,h'=h_2g∈Hg hHh1,h2H使h=gh1gHh=h2gHg
所以 H ′ ∈ g H , H ′ ∈ H g H'∈gH,H'∈Hg HgHHHg
g H = H ′ = H g gH=H'=Hg gH=H=Hg
所以得证。

9

∀ a ∈ G , ( a H ) n = a n H ∀a∈G,(aH)^n=a^nH aG(aH)n=anH
当a为G的生成元时, a n a^n an能生成G,所以商群中每个元素能由 a n H a^nH anH生成
a H aH aH为商群生成元,故其为循环群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值