3
依题意:对任意
g
∈
G
g∈G
g∈G,有
g
H
1
=
H
1
g
g \mathbb H_1=\mathbb H_1 g
gH1=H1g,
g
H
2
=
H
2
g
g \mathbb H_2=\mathbb H_2 g
gH2=H2g
故有
g
h
1
=
h
1
g
gh_1=h_1g
gh1=h1g,
g
h
2
=
h
2
g
gh_2=h_2g
gh2=h2g
对任意
h
1
∈
H
1
,
h
2
∈
H
2
h_1∈\mathbb H_1,h_2∈\mathbb H_2
h1∈H1,h2∈H2,有:
g
h
1
h
2
=
h
1
g
h
2
=
h
1
h
2
g
∈
H
1
H
2
g
gh_1h_2=h_1gh_2=h_1h_2g∈\mathbb H_1\mathbb H_2g
gh1h2=h1gh2=h1h2g∈H1H2g
且
h
1
h
2
g
=
h
1
g
h
2
=
g
h
1
h
2
∈
H
1
H
2
g
h_1h_2g=h_1gh_2=gh_1h_2∈\mathbb H_1\mathbb H_2g
h1h2g=h1gh2=gh1h2∈H1H2g
故
H
1
H
2
是
群
G
的
正
规
子
群
\mathbb H_1\mathbb H_2是群G的正规子群
H1H2是群G的正规子群
5
依题意:
充分性:
ϕ
(
a
⋅
b
)
=
ϕ
(
a
)
∘
ϕ
(
b
)
ϕ(a·b)=ϕ(a)∘ϕ(b)
ϕ(a⋅b)=ϕ(a)∘ϕ(b)
即:
(
a
b
)
2
=
a
2
⋅
b
2
(ab)^2=a^2·b^2
(ab)2=a2⋅b2
即:
a
b
⋅
a
b
=
a
2
⋅
b
2
ab·ab=a^2·b^2
ab⋅ab=a2⋅b2
由消去律可得:
b
⋅
a
=
a
⋅
b
b·a=a·b
b⋅a=a⋅b
故:G是阿贝尔群
必要性:
G是阿贝尔群,则有:
b
⋅
a
=
a
⋅
b
b·a=a·b
b⋅a=a⋅b
ϕ
(
a
⋅
b
)
=
(
a
b
)
2
=
a
b
⋅
a
b
=
a
b
⋅
b
a
=
a
⋅
b
2
⋅
a
=
a
⋅
a
⋅
b
2
=
a
2
⋅
b
2
=
ϕ
(
a
)
∘
ϕ
(
b
)
ϕ(a·b)=(ab)^2=ab·ab=ab·ba=a·b^2·a=a·a·b^2=a^2·b^2=ϕ(a)∘ϕ(b)
ϕ(a⋅b)=(ab)2=ab⋅ab=ab⋅ba=a⋅b2⋅a=a⋅a⋅b2=a2⋅b2=ϕ(a)∘ϕ(b)
故:ϕ是一种群同态
7
因为[G:H]=2,所以对任意g∈G,分有两种情况。
①g∈H时,
g
H
=
H
=
H
g
gH=H=Hg
gH=H=Hg,得证
②g∉H时,
∀
h
∈
H
∀h∈H
∀h∈H,有
g
h
=
h
1
′
∉
H
但
∈
G
,
h
g
=
h
2
′
∉
H
但
∈
G
gh=h_1'∉H但∈G,hg=h_2'∉H但∈G
gh=h1′∈/H但∈G,hg=h2′∈/H但∈G
∃
H
′
=
G
−
H
,
使
得
h
1
′
,
h
2
′
∈
H
′
,
则
有
g
H
∈
H
′
,
H
g
∈
H
′
∃H'=G-H,使得h_1',h_2'∈H',则有gH∈H',Hg∈H'
∃H′=G−H,使得h1′,h2′∈H′,则有gH∈H′,Hg∈H′
∀
h
′
∈
H
′
,
∃
h
1
,
h
2
∈
H
,
使
h
′
=
g
h
1
∈
g
H
,
h
′
=
h
2
g
∈
H
g
∀h'∈H',∃h_1,h_2∈H,使h'=gh_1∈gH,h'=h_2g∈Hg
∀h′∈H′,∃h1,h2∈H,使h′=gh1∈gH,h′=h2g∈Hg
所以
H
′
∈
g
H
,
H
′
∈
H
g
H'∈gH,H'∈Hg
H′∈gH,H′∈Hg
故
g
H
=
H
′
=
H
g
gH=H'=Hg
gH=H′=Hg
所以得证。
9
∀
a
∈
G
,
(
a
H
)
n
=
a
n
H
∀a∈G,(aH)^n=a^nH
∀a∈G,(aH)n=anH
当a为G的生成元时,
a
n
a^n
an能生成G,所以商群中每个元素能由
a
n
H
a^nH
anH生成
故
a
H
aH
aH为商群生成元,故其为循环群