给定n种物品,每种物品的重量和价值分别为wi和vi,每种物品都只有一个。另外,背包容量为W。求解在不超过背包容量的情况下将哪些物品放入背包,才可以使背包中的物品价值之和最大。每种物品只有一个,要么不放入(0),要么放入(1),因此被称为01背包。
状态表示:c[i][j]表示将前i种物品放入容量为j的背包中所获得的最大价值。
对于第i种物品的两种处理状态:
- 不放入:放入背包的价值不增加,问题会转化为“将前i-1种物品放入容量为j的背包获得的最大价值”,最大价值为从c[i-1][j].
- 放入:问题转化为“将前i-1种物品放入容量为j-w[i]的背包活得的最大价值”,此时获得的最大价值就是c[i-1][j-w[i]],再加上放入第i种物品获得的价值v[i],总价值为c[i-1][j-w[i]]+v[i].
算法实现
for(int i=0;i<n+1;i++)
for(int j=1;j<w+1;j++)
if(j<w[i])
c[i][j]=c[i-1][j];
else
c[i][j]=max(c[i-1][j],c[i-1][j-w[i]]+v[i]);
cout<<“放入背包的最大价值为:”<<c[n][w]<<endl;
算法优化
void dynamic(int n,int W){
for(int i=1;i<n+1;i++)
for(int j=W;j>w[i]-1;j--)
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
}