题目
使用队列实现栈的下列操作:
push(x) -- 元素 x 入栈
pop() -- 移除栈顶元素
top() -- 获取栈顶元素
empty() -- 返回栈是否为空
注意:
你只能使用队列的基本操作-- 也就是 push to back, peek/pop from front, size, 和 is empty 这些操作是合法的。
你所使用的语言也许不支持队列。 你可以使用 list 或者 deque(双端队列)来模拟一个队列 , 只要是标准的队列操作即可。
你可以假设所有操作都是有效的(例如, 对一个空的栈不会调用 pop 或者 top 操作)。
思路
(这里要强调是单向队列)
队列模拟栈,其实一个队列就够了,那么我们先说一说两个队列来实现栈的思路。
队列是先进先出的规则,把一个队列中的数据导入另一个队列中,数据的顺序并没有变,并没有变成先进后出的顺序。
所以用栈实现队列, 和用队列实现栈的思路还是不一样的,这取决于这两个数据结构的性质。
但是依然还是要用两个队列来模拟栈,只不过没有输入和输出的关系,而是另一个队列完全用来备份的!
如下面动画所示,用两个队列que1和que2实现队列的功能,que2其实完全就是一个备份的作用,把que1最后面的元素以外的元素都备份到que2,然后弹出最后面的元素,再把其他元素从que2导回que1。
模拟的队列执行语句如下:
queue.push(1);
queue.push(2);
queue.pop(); // 注意弹出的操作
queue.push(3);
queue.push(4);
queue.pop(); // 注意弹出的操作
queue.pop();
queue.pop();
queue.empty();
详细如代码注释所示:
class MyStack {
public:
queue que1;
queue que2; // 辅助队列,用来备份
/** Initialize your data structure here. */
MyStack() {
}
/** Push element x onto stack. */
void push(int x) {
que1.push(x);
}
/** Removes the element on top of the stack and returns that element. */
int pop() {
int size = que1.size();
size--;
while (size--) { // 将que1 导入que2,但要留下最后一个元素
que2.push(que1.front());
que1.pop();
}
int result = que1.front(); // 留下的最后一个元素就是要返回的值
que1.pop();
que1 = que2; // 再将que2赋值给que1
while (!que2.empty()) { // 清空que2
que2.pop();
}
return result;
}
/** Get the top element.
** Can not use back() direactly.
*/
int top(){
int size = que1.size();
size--;
while (size--){
// 将que1 导入que2,但要留下最后一个元素
que2.push(que1.front());
que1.pop();
}
int result = que1.front(); // 留下的最后一个元素就是要回返的值
que2.push(que1.front()); // 获取值后将最后一个元素也加入que2中,保持原本的结构不变
que1.pop();
que1 = que2; // 再将que2赋值给que1
while (!que2.empty()){
// 清空que2
que2.pop();
}
return result;
}
/** Returns whether the stack is empty. */
bool empty() {
return que1.empty();
}
};
时间复杂度: pop为O(n),top为O(n),其他为O(1)
空间复杂度: O(n)
优化
其实这道题目就是用一个队列就够了。
一个队列在模拟栈弹出元素的时候只要将队列头部的元素(除了最后一个元素外) 重新添加到队列尾部,此时再去弹出元素就是栈的顺序了。
C++优化代码
class MyStack {
public:
queue que;
MyStack() {
}
void push(int x) {
que.push(x);
}
int pop() {
int size = que.size();
size--;
while (size--) { // 将队列头部的元素(除了最后一个元素外) 重新添加到队列尾部
que.push(que.front());
que.pop();
}
int result = que.front(); // 此时弹出的元素顺序就是栈的顺序了
que.pop();
return result;
}
int top(){
int size = que.size();
size--;
while (size--){
// 将队列头部的元素(除了最后一个元素外) 重新添加到队列尾部
que.push(que.front());
que.pop();
}
int result = que.front(); // 此时获得的元素就是栈顶的元素了
que.push(que.front()); // 将获取完的元素也重新添加到队列尾部,保证数据结构没有变化
que.pop();
return result;
}
bool empty() {
return que.empty();
}
};
时间复杂度: pop为O(n),top为O(n),其他为O(1)
空间复杂度: O(n)
其他语言版本
Java:
使用两个 Queue 实现方法1
class MyStack {
Queue<Integer> queue1; // 和栈中保持一样元素的队列
Queue<Integer> queue2; // 辅助队列
/** Initialize your data structure here. */
public MyStack() {
queue1 = new LinkedList<>();
queue2 = new LinkedList<>();
}
/** Push element x onto stack. */
public void push(int x) {
queue2.offer(x); // 先放在辅助队列中
while (!queue1.isEmpty()){
queue2.offer(queue1.poll());
}
Queue<Integer> queueTemp;
queueTemp = queue1;
queue1 = queue2;
queue2 = queueTemp; // 最后交换queue1和queue2,将元素都放到queue1中
}
/** Removes the element on top of the stack and returns that element. */
public int pop() {
return queue1.poll(); // 因为queue1中的元素和栈中的保持一致,所以这个和下面两个的操作只看queue1即可
}
/** Get the top element. */
public int top() {
return queue1.peek();
}
/** Returns whether the stack is empty. */
public boolean empty() {
return queue1.isEmpty();
}
}
使用两个 Queue 实现方法2
class MyStack {
//q1作为主要的队列,其元素排列顺序和出栈顺序相同
Queue q1 = new ArrayDeque<>();
//q2仅作为临时放置
Queue q2 = new ArrayDeque<>();
public MyStack() {
}
//在加入元素时先将q1中的元素依次出栈压入q2,然后将新加入的元素压入q1,再将q2中的元素依次出栈压入q1
public void push(int x) {
while (q1.size() > 0) {
q2.add(q1.poll());
}
q1.add(x);
while (q2.size() > 0) {
q1.add(q2.poll());
}
}
public int pop() {
return q1.poll();
}
public int top() {
return q1.peek();
}
public boolean empty() {
return q1.isEmpty();
}
}
使用两个 Deque 实现
class MyStack {
// Deque 接口继承了 Queue 接口
// 所以 Queue 中的 add、poll、peek等效于 Deque 中的 addLast、pollFirst、peekFirst
Deque que1; // 和栈中保持一样元素的队列
Deque que2; // 辅助队列
/** Initialize your data structure here. */
public MyStack() {
que1 = new ArrayDeque<>();
que2 = new ArrayDeque<>();
}
/** Push element x onto stack. */
public void push(int x) {
que1.addLast(x);
}
/** Removes the element on top of the stack and returns that element. */
public int pop() {
int size = que1.size();
size--;
// 将 que1 导入 que2 ,但留下最后一个值
while (size-- > 0) {
que2.addLast(que1.peekFirst());
que1.pollFirst();
}
int res = que1.pollFirst();
// 将 que2 对象的引用赋给了 que1 ,此时 que1,que2 指向同一个队列
que1 = que2;
// 如果直接操作 que2,que1 也会受到影响,所以为 que2 分配一个新的空间
que2 = new ArrayDeque<>();
return res;
}
/** Get the top element. */
public int top() {
return que1.peekLast();
}
/** Returns whether the stack is empty. */
public boolean empty() {
return que1.isEmpty();
}
}
优化,使用一个 Deque 实现
class MyStack {
// Deque 接口继承了 Queue 接口
// 所以 Queue 中的 add、poll、peek等效于 Deque 中的 addLast、pollFirst、peekFirst
Deque que1;
/** Initialize your data structure here. */
public MyStack() {
que1 = new ArrayDeque<>();
}
/** Push element x onto stack. */
public void push(int x) {
que1.addLast(x);
}
/** Removes the element on top of the stack and returns that element. */
public int pop() {
int size = que1.size();
size--;
// 将 que1 导入 que2 ,但留下最后一个值
while (size-- > 0) {
que1.addLast(que1.peekFirst());
que1.pollFirst();
}
int res = que1.pollFirst();
return res;
}
/** Get the top element. */
public int top() {
return que1.peekLast();
}
/** Returns whether the stack is empty. */
public boolean empty() {
return que1.isEmpty();
}
}
优化,使用一个 Queue 实现
class MyStack {
Queue<Integer> queue;
public MyStack() {
queue = new LinkedList<>();
}
//每 offer 一个数(A)进来,都重新排列,把这个数(A)放到队列的队首
public void push(int x) {
queue.offer(x);
int size = queue.size();
//移动除了 A 的其它数
while (size-- > 1)
queue.offer(queue.poll());
}
public int pop() {
return queue.poll();
}
public int top() {
return queue.peek();
}
public boolean empty() {
return queue.isEmpty();
}
}
优化,使用一个 Queue 实现,但用卡哥的逻辑实现
class MyStack {
Queue queue;
public MyStack() {
queue = new LinkedList<>();
}
public void push(int x) {
queue.add(x);
}
public int pop() {
rePosition();
return queue.poll();
}
public int top() {
rePosition();
int result = queue.poll();
queue.add(result);
return result;
}
public boolean empty() {
return queue.isEmpty();
}
public void rePosition(){
int size = queue.size();
size--;
while(size-->0)
queue.add(queue.poll());
}
}