Anaconda安装、配置环境变量、换镜像、创建虚拟环境、在各虚拟环境上使用spyder/jupyter、添加虚拟环境中jupyter的快捷方式

一、Anaconda安装

安装方式很简单,和安装miniconda一模一样。强烈建议不要安装默认路径安装,自己在其它盘创建一个文件夹安装。具体查看我的另外一篇帖子:通过Miniconda安装CPython(Windows环境)-CSDN博客

二、配置环境变量

安装完成后,进行环境变量配置

1、打开电脑设置,找到高级系统设置,点击打开,然后点击高级、点击环境变量

2、点击用户变量中的path

3、点击添加 依然添加 刚才安装的G:\Program\Aanconda、 G:\Program\Aanconda\Scripts、G:\Program\Aanconda\Library\bin  的路径。然后点击确定

4、win+R 打开cmd 输入 conda --version

 如图:

5、然后输入 conda info

 6、然后输入 activate 没有任何反应 直接会出现下一行命令提示符

7、然后输入 python 出现类似下图的提示,则成功。

三、更换镜像源

安装的anaconda后,下载库是使用默认的国外源 ,下载速度很慢,所有需要换国内的镜像。

1、对conda的镜像进行修改

(1)、打开annaconda的终端 Anaconda Prompt 

(2)、访问清华大学镜像网站 anaconda | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror

如下图:

(3)按照页面提示进行修改。更新~/.condarc文件,在C:\Users\用户名\.\condarc文件。即可完成conda镜像源修改

2、设置pip镜像源进行修改

(1)点击网站 pypi | 镜像站使用帮助 | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror  根据页面指示进行pip镜像修改。(注意:先看一下自己的pip版本,如果超过10.0.0版本就跳过更更新Pip的步骤,直接进行下面操作)

三、创建虚拟环境  

anaconda安装后的环境是base环境,为了保证base能够正常的运行,一般不对base环境进行修改,需要创建新的虚拟环境。每种环境可以安装不同版本的python或者conda里的包。

可以通过conda env list 查看存在的环境

conda env list

如下图: 这里我新建了名为geo_py3.7的虚拟环境

 1、创建环境

执行下面代码:
conda create -n 新虚拟环境的名字 -c conda-forge python=版本
例如:conda create -n myenv_py3.9 -c conda-forge python=3.9

或者是不使用conda-forge的channel 使用默认的channel,如下
conda create -n 新虚拟环境的名字 python=版本

如图我创建了myenv_py3.9的虚拟环境

2、激活创建的新环境 执行下面代码

activate 虚拟环境名

如下图:

 如果想克隆某个环境可以使用下面命令

conda create -n 新环境的名称 --clone 老环境名称

四、在各虚拟环境上使用spyder/jupyter

 创建新环境,且切换到新环境后,可以使用conda list查看该环境下已经安装的包。

新建的环境下是没有spyder和jupyter的。如下图,新安装的myenv_py3.9环境下就没有spyder/jupyter

安装anaconda后在目录下出现的spyder和jupyder是基于base环境的,打开这个spyder和jupyter是启动base环境。需要在创建的虚拟环境下安装spyder或jupyter才能调用在该虚拟环境下的包。

下面安装jupyter (spyder同理,建议安装jupyter,因为spyder需要的依赖库更多,自己安装不容易成功) 。

输入以下命令:

conda install jupyter notebook

执行成功后,conda list 可以看到 jupyter

想要启动此jupyter,直接输入:

jupyter notebook

就可以使用jupyter了

五、添加虚拟环境中jupyter的快捷方式

上述新环境中安装的jupyter发现没有快捷方式,只能使用命令行打开,非常麻烦。

下面讲述如何为新环境myenv_py3.9中的jupyter添加新环境。

1、找到jupyter notebook(Anaconda)  (基于base环境(目录上)的Jupyter)文件所在位置,复制快捷方式

2、更改快捷方式为jupyter notebook(myenv_py3.9)后右键打开属性

3、将目标栏中的结果复制出来

如下:

G:\Program\Aanconda\python.exe 
G:\Program\Aanconda\cwp.py 
G:\Program\Aanconda G:\Program\Aanconda\python.exe
G:\Program\Aanconda\Scripts\jupyter-notebook-script.py

将上述更改为:

G:\Program\Aanconda\envs\myenv_py3.9\Scripts\jupyter-notebook.exe 
G:\programming_jobs\python_work\jupyter_myenv_py3.9
#第一个地址是myenv_py3.9环境下 jupyter-notebook.exe所在的地址
#第二个是jupyter默认打开的文件夹,可以自行设定

"%USERPROFILE%/" 不变

注意 格式(空格等)!!!

改好后点击确定。可以发现在菜单目录中出现了myenv_py3.9环境下jupyter的快捷方式。

### 如何使用 Anaconda 创建虚拟环境 #### 使用 `conda` 命令管理虚拟环境 通过 `conda` 工具,可以轻松创建、管理和删除 Python 虚拟环境。以下是关于如何创建虚拟环境的具体说明。 #### 更新 Conda 版本 为了确保工具的稳定性,在操作之前建议先检查并更新当前的 Conda 版本(通常不推荐频繁更新)。可以通过以下命令完成此操作: ```bash conda update conda ``` #### 查看已有的虚拟环境列表 在执行任何操作前,可以查看当前系统中存在的所有虚拟环境及其路径。这有助于确认目标环境中是否存在冲突或重复项。运行如下命令即可实现该功能: ```bash conda env list ``` 上述命令会显示所有的虚拟环境以及它们对应的存储位置[^1]。 #### 创建新的虚拟环境 要新建一个特定版本的 Python 虚拟环境,只需提供环境名和所需的 Python 版本号作为参数传递给 `create` 子命令。例如,如果希望构建一个名为 “pytorch” 的新环境,并将其配置Python 3.11,则应执行下列语句: ```bash conda create -n pytorch python=3.11 ``` 这里,“-n” 参数指定了即将建立的新环境的名字;而紧跟其后的部分定义了所期望使用Python 解释器具体版本信息[^2]。 #### 验证环境路径 一旦成功建立了某个具体的虚拟工作区之后,可能还需要进一步验证它的实际磁盘定位情况以便于后续开发过程中能够准确无误地引用到它。虽然前面提到过的列举现有环境的方法已经提供了这些数据,但是有时候单独获取某单一实例的信息更加直观明了一些。遗憾的是原文档并未给出确切做法,不过常规情况下可以直接访问 anaconda 安装目录下的相应子文件夹来找到答案。 #### 更改默认Python版本示例 除了上面介绍的标准流程之外,有时也可能需要调整其他方面设置比如改变基础库集合或者自定义更多依赖关系等等。举个例子来说吧,假设现在打算设立另一个叫做 'pytorch1.7' 并且预设好python解释程序处于较旧状态即v3.8上头的话那么就可以按照这种方式来进行处理啦: ```bash conda create --name pytorch1.7 python=3.8 ``` 值得注意的一点就是这里的命名规则完全取决于个人喜好或者是项目需求所以完全可以自由发挥不受限于任何形式约束[^3]。 #### 总结 综上所述,借助强大的Conda包管理系统我们可以非常简便高效地达成隔离不同应用场景之间相互干扰的目的从而极大地方便了日常科研活动当中对于多样性和灵活性的要求。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值