一、安装
查看另一篇帖子CNMAPS安装(踩坑记录)-CSDN博客,踩坑较多,容易崩。
二、常用类和函数
1、classcnmaps.maps.MapPolygon(shapely.geometry.MultiPolygon)
地图多边形类
它是基于shapely.geometry.MultiPolygon的自定义类, 并实现了对于加号操作符的支持.
(1)drop_inner_duplicate(map_polygon)
地图对象的自我纠正,剔除内含的多余多变形,常见于多个地图多边形对象合并时,
参数: map_polygon (cnmaps.maps.MapPolygon) – 地图边界对象, 可以通过 get_adm_maps()
获取
返回:经过纠正后的MapPolygon对象
返回类型:cnmaps.maps.MapPolygon
(2)get_extent(buffer=2)
获取坐标范围
参数:buffer (float or int) – 外扩缓冲边缘, 单位为°, 该值越大, 所取的范围越大. 默认为 2.
返回:坐标范围点, 该值可直接传入 ax.set_extent()
使用
返回类型:tuple
2、cnmaps.maps.get_adm_names(province: str = None, city: str = None, district: str = None, level: str = '省', country: str = '中华人民共和国', source: str = '高德')
获取行政名称
参数:
province (str) – 省/自治区/直辖市/行政特区中文名, 必须为全称, 例如查找河北省应收入 '河北省'
而非 '河北'
. 默认为 None
city (str) – 地级市中文名, 必须为全称, 例如查找北京市应输入 '北京市'
而非 '北京'
. 默认为 None
.
district (str) – 区/县中文名, 必须为全称. 默认为 None
.
level (str) – 边界等级, 目前支持的等级包括 '省'
, '市'
, '区县'
. 其中 '省'
级包括直辖市、特区等; '市'
级为地级市, 若为直辖市, 则名称与 '省'
级相同, 比如北京市的省级和市级都是 '北京市'
; '区'
和 '县'
属于同一级别的不同表达形式. 默认为 '省'
.
country (str) – 国家名称, 必须为全称. 默认为 '中华人民共和国'
.
source (str) – 数据源. 默认为 '高德'
.
返回: 满足条件的名称列表
返回类型: list
3、cnmaps.maps.get_adm_maps(province: str = None, city: str = None, district: str = None, level: str = '省', country: str = '中华人民共和国', source: str = '高德', db: str = DB_FILE, engine: str = None, record: str = 'all', only_polygon: bool = False, *args, **kwargs)
获取行政地图的边界对象
参数
-
province (str) – 省/自治区/直辖市/行政特区中文名, 必须为全称, 例如查找河北省应收入
'河北省'
而非'河北'
. 默认为None
. -
city (str) – 地级市中文名, 必须为全称, 例如查找北京市应输入
'北京市'
而非'北京'
. 默认为None
. -
district (str) – 区/县中文名, 必须为全称. 默认为
None
. -
level (str) – 边界等级, 目前支持的等级包括
'省'
,'市'
,'区县'
. 其中'省'
级包括直辖市、特区等;'市'
级为地级市, 若为直辖市, 则名称与'省'
级相同, 比如北京市的省级和市级都是'北京市'
;'区'
和'县'
属于同一级别的不同表达形式. 默认为'省'
. -
country (str) – 国家名称, 必须为全称. 默认为
'中华人民共和国'
. -
source (str) – 数据源. 默认为
'高德'
. -
db (str) – sqlite db文件路径. 默认从配置文件中取.
-
engine (str) – 输出引擎, 默认为None, 输出为list列表, 目前支持’geopandas’, 若为geopandas, 则返回GeoDataFrame对象. 默认为 None.
-
record (str) – 返回记录的形式, 选项包括
'all'
和'first'
; 若为'first'
, 则无论查询结果又几条,仅返回第一条记录, 若为'all'
, 则返回全部数据, 若engine==None
则返回list, 若engine=='geopandas'
, 则返回GeoDataFrame对象. 默认为'all'
. -
only_polygon (bool) – 是否仅返回地图边界对象(MapPolygon), 若为
True
则返回结果为MapPolygon对象或以MapPolygon对象组合的list, 若为False
, 则返回的结果包含元信息, MapPolygon对象存储在'geometry'
键中. 默认为False
.
返回:根据输入参数查找到的地图边界的元信息及边界对象
返回类型:GeoDataFrame or list
4、drawing
drawing模块主要存放与绘图相关的函数
(1)cnmaps.drawing.clip_contours_by_map(contours, map_polygon)
使用地图边界对象对等值线对象进行裁剪
参数
-
contours (cartopy.mpl.contour.GeoContourSet) – 等值线对象, 该对象是调用
ax.contour()
或ax.contourf()
方法的返回值,注意: 对象须带有投影信息 -
map_polygon (cnmaps.maps.MapPolygon) – 地图边界对象, 可以通过
get_adm_maps()
获取
(2)cnmaps.drawing.clip_pcolormesh_by_map(mesh, map_polygon)
使用地图边界对象对填色网格线对象进行裁剪
参数
-
mesh (cartopy.mpl.geocollection.GeoQuadMesh) – GeoQuadMesh对象, 该对象是调用
ax.pcolormesh()
方法的返回值,注意: 对象须带有投影信息 -
map_polygon (cnmaps.maps.MapPolygon) – 地图边界对象, 可以通过
get_adm_maps()
获取
(3)cnmaps.drawing.clip_clabels_by_map(clabel_text, map_polygon)
剪切clabel文本, 一般配合contour函数使用
-
注意: 该函数仅对于cartopy>=0.19.0版本有效
参数
-
clabel_text (matplotlib.text.Text) – matplotlib.text.Text对象, 由
clabel
函数返回 -
map_polygon (cnmaps.maps.MapPolygon) – 地图边界对象, 可以通过
get_adm_maps()
获取
cnmaps.drawing.draw_maps(maps, **kwargs)
(4)绘制多个地图边界
参数
maps (list or GeoDataFrame) – 地图边界线对象
5、regions
(1)regions
模块主要存放组合后的边界对象
cnmaps.regions.region_polygons
区域性组合地图多边形数据字典,包含的键有:
东北地区、华北地区、华中地区、华南地区、华东地区、西南地区、西北地区、川渝、京津冀、江浙沪、长三角
6、sample
(1)sample
模块主要存放示例数据
cnmaps.sample.load_dem(area_name, **kwargs)
参数
area_name (str) – 区域名称, 目前仅支持 '京津冀'
, 若为None则取全国. 默认为 None.
返回 (lons, lats, data)
三、例子
(1)绘制国界
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_adm_maps, draw_maps
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_maps(get_adm_maps(level='国'))
plt.show()
(2)省行政区
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_adm_maps, draw_maps
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_maps(get_adm_maps(level='省'), linewidth=0.8, color='k')
plt.show()
(3)合并边界
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cnmaps import get_adm_maps, draw_map
beijing = get_adm_maps(province='北京市', only_polygon=True, record='first')
tianjin = get_adm_maps(province='天津市', only_polygon=True, record='first')
hebei = get_adm_maps(province='河北省', only_polygon=True, record='first')
jingjinji = beijing + tianjin + hebei
fig = plt.figure(figsize=(5,5))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
draw_map(jingjinji)
plt.show()
(4)剪切填色等值线(contourf)图
未剪裁的:
剪裁的
from cnmaps import get_adm_maps, clip_contours_by_map, draw_map
from cnmaps.sample import load_dem
import numpy as np
lons, lats, data = load_dem()
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())
map_polygon = get_adm_maps(country='中华人民共和国', record='first', only_polygon=True)
cs = ax.contourf(lons, lats, data,
cmap=plt.cm.terrain,
levels=np.linspace(-2800, data.max(), 10),
transform=ccrs.PlateCarree())
clip_contours_by_map(cs, map_polygon)
draw_map(map_polygon, color='k', linewidth=1)
#draw_maps(get_adm_maps(level='省'))
plt.show()