【文献阅读】大脑连接性的复杂网络度量

论文标题:Complex network measures of brain connectivity: Uses and interpretations
论文链接:【NeuroImage】Complex network measures of brain connectivity: Uses and interpretations
作者:
发表日期:September 2010
发表期刊/会议:NeuroImage


摘要 Abstract

大脑连接数据集由解剖束或功能联系连接的大脑区域网络组成。

复杂网络分析,一种新兴的多学科方法,用于研究复杂系统——旨在用少量具有神经生物学意义且易于计算的度量来表征这些大脑网络。
在本文中,讨论了从连接数据构建大脑网络,并描述了最常用的结构和功能连接的网络度量
描述了各种度量,它们分别用于检测功能整合与分离、量化个别大脑区域或通路的中心性、表征局部解剖回路模式,并测试网络对损伤的韧性。讨论了结构和功能网络连接的比较问题,以及跨个体的网络比较问题。

引言 Introduction

介绍了现代大脑映射技术以及它们如何产生大量解剖或功能连接模式的数据集,以及复杂网络分析的兴起。

脑网络的建立 Construction of brain networks

讨论了如何从连接数据构建大脑网络,并定义了网络中的节点和链接

用城市和道路的比喻来通俗解释这段话:
想象一下,一个城市由许多区(节点)组成,就像大脑中的不同区域。这些区域之间的道路(链接)就是它们之间的连接。在大脑的“城市”中,这些区域和道路有几种不同的类型:

  1. 解剖学连接:就像城市中的主要道路,它们是实体存在的,连接不同的区域。在大脑中,这些是白质束,它们是神经纤维的集合,就像连接不同城市区域的高速公路。

  2. 功能性连接:这有点像不同区域间的交通流量。即使两个区域之间没有直接的道路,如果人们经常在这两个区域之间移动,我们可以说这两个区域在功能上是连接的。在大脑中,这意味着即使两个大脑区域在解剖学上不直接相连,但如果它们的活动模式在时间上有关联,我们也认为它们是功能上连接的。

  3. 有效连接:这可以比作城市中的公共交通系统,比如地铁或公交车,它们直接影响人们从一个地点到另一个地点的流动。在大脑中,有效连接是指一个大脑区域能够直接或间接地影响另一个区域的活动,就像一个区域的大脑活动能够影响另一个区域的活动。

所以,当我们谈论大脑网络的构建时,我们实际上是在讨论这些不同类型的连接如何在大脑的不同区域之间形成复杂的网络,这些网络决定了大脑如何协调不同区域的活动,完成各种复杂的任务。

【图2】三种不同类型的大脑连接网络的例子,并且说明了它们是如何被构建和表示的:

  1. 解剖学连接网络 A
    这是猕猴大脑皮层的一个网络图,展示了大脑中不同区域之间的物理连接。这些区域包括处理视觉信息的腹侧和背侧路径,以及与身体感觉和运动有关的区域。这些区域在图中用不同的颜色进行了标记,具体的区域名称和缩写可以在额外提供的信息中找到。

  2. 功能性连接网络 B
    这个网络图显示了不同大脑区域活动之间的相关性。这里的活动是通过BOLD信号(一种可以反映大脑活动水平的信号)来衡量的。如果两个区域的活动通常是同步增强的,它们就用暖色表示;如果通常是同步减少的,就用冷色表示。还有一个版本是去除了一些不重要的连接(比如负相关和自我相关)之后的网络图。

  3. 有效连接网络 C
    这个网络图是基于一种叫做转移熵的方法构建的,它可以帮助我们理解一个大脑区域的活动是如何影响另一个区域的。这个网络图也进行了阈值处理,只保留了最强的连接,数量与解剖学网络中的连接数量相同。如果想了解更多关于这些网络的信息,可以参考Honey等人在2007年的研究。

在这里插入图片描述

节点的性质 The nature of nodes

讨论了大脑网络中节点的特性,包括它们如何由大脑映射方法、解剖划分方案和连接度量确定。

在大脑网络中,节点代表的是大脑的区域。如何定义和选择这些大脑区域(节点)取决于多种因素,包括如何测量大脑区域之间的连接(链接),以及如何将大脑划分成不同的区域。

  • 节点选择的重要性:选择如何定义这些节点非常重要,因为这将影响我们对网络结构的理解。如果将连接方式不同的大脑区域合并为一个节点,可能会丢失一些重要的信息。

  • 空间覆盖:划分方案需要确保整个大脑的区域都被覆盖,同时避免节点之间的空间重叠。

  • 技术限制:使用像MEG和EEG这样的技术来测量大脑活动时,可能会遇到一些问题,比如传感器可能会检测到重叠的信号,这可能会影响我们对节点的定义。

  • 网络比较:如果我们想要比较不同个体或不同条件下的大脑网络,我们需要确保这些网络是使用相同的划分方案构建的,这样比较才是有意义的。

链接的性质 The nature of links

讨论了链接的特性,包括它们是二元的还是加权的,以及它们是否有方向性。

链接是网络中节点之间的连接,它们可以是简单的存在或不存在(二元链接),也可以包含更多信息,比如连接的强度(加权链接)。在大脑网络中,链接可以代表不同类型的连接:

  • 解剖学连接:就像城市之间的实际道路,它们是大脑区域之间的物理连接。
  • 功能性连接:类似于城市间经济活动的相互影响,即使没有直接的物理连接,也可以通过活动的相关性来体现连接。
  • 有效连接:反映了一个大脑区域如何直接影响另一个区域,可以是直接的或间接的。

文章还提到,虽然许多研究为了简化分析而忽略了连接的权重,但考虑权重可以帮助我们更好地理解网络的结构。此外,链接可以是单向的或双向的,这取决于它们是否表示因果关系。当前的技术还不能直接测量这种方向性,但通过特定的研究方法,我们可以推断出这种方向性。最后,文章指出在进行网络分析之前,需要从网络中移除自连接或负连接,以便更准确地分析网络的结构。

大脑网络的度量 Measures of brain networks

这部分文章讨论了如何量化和理解大脑网络的不同方面。它提到了多种度量方法,这些方法可以帮助我们了解大脑网络的结构和功能:

  • 度量的目的:度量方法用于检测大脑网络的不同特征,比如功能整合(大脑区域如何协同工作)和功能分离(大脑区域如何保持独立性)。

  • 度量的种类:介绍了不同的度量方法,包括局部度量(关注单个节点或链接)和全局度量(关注整个网络)。

  • 度量表示方式:度量可以通过多种方式表示,比如节点的连接度(度)或网络的平均连接度(度分布)。

  • 度量变体:度量方法有不同变体,比如二元(只有连接或不连接)和加权(考虑连接的强度)版本,以及有向(考虑连接的方向)和无向版本。

  • 度量的影响因素:许多度量值受到网络基本特性的影响,如节点和链接的数量,因此在解释度量结果时,需要与随机网络模型进行比较,以确定其统计意义。

  • 度量的应用:通过这些度量,研究人员可以更好地理解大脑网络如何在结构上和功能上组织起来,以及它们如何响应损伤或变化。

【图3】网络拓扑的度量
图3展示了用于分析网络结构的几种关键度量方法。

  • 整合度量:基于最短路径长度(绿色表示),用于衡量网络中节点间的连接紧密程度。短的最短路径意味着节点间容易通信,表明了网络的整合性。

  • 分离度量:通常基于三角形计数(蓝色表示),用于衡量网络中小团体或模块内部的连接密集程度。此外,还包括更复杂的模块分解(用椭圆形表示)。

  • 中心性度量:可能基于节点的度(红色表示)或基于节点间最短路径的长度和数量。中心性高的节点(黑色表示)往往位于许多最短路径上,因此通常具有较高的介数中心性。

  • 局部连接模式:通过网络模体(黄色表示)来量化。网络模体是指在网络中反复出现的小型连接模式。例如,一个包含三个节点和四个链接的解剖学模体可以有六种可能的功能模体,图中展示了其中的两个——一个包含虚线链接的模体和一个包含交叉链接的模体。

  • 模体示例:图例中提到了一个具体的模体示例,即三节点四链接的解剖学模体,这可能指的是网络中三个节点通过不同的链接方式形成的结构,这些结构在功能上可能有不同的意义。

简而言之,图3通过不同颜色和形状的图示,展示了如何通过不同的度量方法来理解和分析复杂网络的结构特性,包括网络的整合性分离性中心性以及局部连接模式

在这里插入图片描述

功能分离度量 Measures of functional segregation

讨论了用于量化网络中功能分离的度量,例如模块检测。

功能整合度量 Measures of functional integration

讨论了用于量化大脑区域间通信的容易程度的度量,例如特征路径长度和全局效率。

小世界网络理论 Small-world brain connectivity

讨论了小世界网络理论在大脑连接性中的应用。

网络模式 Network motifs

讨论了网络模式(网络中的小模式),它们是如何揭示网络的局部连接模式。

中心性度量 Measures of centrality

讨论了用于评估网络中个体节点重要性的中心性度量。

网络韧性度量 Measures of network resilience

讨论了用于评估网络对损伤的韧性的度量。

网络比较 Network comparison

讨论了网络比较的相关问题,包括结构和功能网络的差异以及跨个体的网络比较。

BCT软件 Brain connectivity analysis software

介绍了用于大脑连接性分析的软件工具

结论 Conclusion

结论部分总结了复杂网络分析作为表征解剖和功能大脑连接性的重要工具。

Appendix A.

表A1 复杂网络度量的数学定义

度量二元和无向定义加权和有向定义
基本概念和度量 基本概念和符号 N N N 是网络中所有节点的集合, n n n 是节点的数量。 L L L 是网络中所有链接的集合, l l l 是链接的数量 ( i , j ) (i,j) (i,j) 是节点 i i i j j j 之间的链接,其中 ( i , j ∈ N ) (i,j \in N) (i,jN) a i j a_{ij} aij i i i j j j 之间的连接状态:当链接 ( i , j ) (i,j) (i,j) 存在时(当 i i i j j j 是邻居时) a i j = 1 a_{ij} = 1 aij=1;否则 a i j = 0 a_{ij} = 0 aij=0(对于所有 i i i a i i = 0 a_{ii} = 0 aii=0)。我们计算链接的数量为 l = ∑ i : j ∈ N a i j l = \sum_{i: j \in N} a_{ij} l=i:jNaij为了避免与有向链接的歧义,我们将每个无向链接计算两次,作为 a i j a_{ij} aij a j i a_{ji} aji)。链接 ( i , j ) (i,j) (i,j) 与连接权重 w i j w_{ij} wij 相关联。从此以后,我们假设权重是标准化的,使得对于所有的 i i i j j j 0 ≤ w i j ≤ 1 0 \leq w_{ij} \leq 1 0wij1 l w l^w lw 是网络中所有权重的总和,计算为 l w = ∑ i , j ∈ N w i j l^w = \sum_{i, j \in N} w_{ij} lw=i,jNwij。有向链接 ( i , j ) (i,j) (i,j) i i i j j j 是有序的。因此,在有向网络中 a i j a_{ij} aij 并不一定等于 a j i a_{ji} aji
度量二元和无向定义加权和有向定义
节点的度:连接到节点的链接数量节点 i i i的度,
k i = ∑ j ∈ N a i j k_i = \sum_{j \in N} a_{ij} ki=jNaij
加权度 i i i
k i w = ∑ j ∈ N w i j k_i^w = \sum_{j \in N} w_{ij} kiw=jNwij
(有向) i i i 的出度 k i out = ∑ j ∈ N a i j k_i^{\text{out}} = \sum_{j \in N} a_{ij} kiout=jNaij
(有向) i i i 的入度 k i in = ∑ j ∈ N a j i k_i^{\text{in}} = \sum_{j \in N} a_{ji} kiin=jNaji
最短路径长度:衡量整合的基础节点 i i i j j j 之间的最短路径长度(距离),
d i j = ∑ a u v ∈ g i ↔ j a u v d_{ij} = \sum_{a_{uv} \in {g}{i \leftrightarrow j}} a_{uv} dij=auvgijauv
节点 i i i j j j 之间的最短加权路径长度,
d i j w = ∑ a w ∈ g i ↔ j f ( w u v ) d_{ij}^w = \sum_{a_{w} \in \mathfrak{g}i \leftrightarrow j} f(w_{uv}) dijw=awgijf(wuv)
其中 f f f 是从权重到长度的映射(例如,倒数),并且 g i → j w {g}_{i \rightarrow j}^{w} gijw i i i j j j 之间的最短加权路径。
节点 i i i 周围的三角形数量:衡量分离的基础节点 i i i 周围的三角形数量, t i = 1 2 ∑ j , h ∈ N a i j a i h a j h t_i = \frac{1}{2} \sum_{j,h \in N} a_{ij} a_{ih} a_{jh} ti=21j,hNaijaihajh(加权)节点 i i i 周围的三角形几何平均数,
t i w = 1 2 ∑ j , h ∈ N ( w i j w i h w j h ) 1 3 t_i^w = \frac{1}{2} \sum_{j,h \in N} (w_{ij} w_{ih} w_{jh})^{\frac{1}{3}} tiw=21j,hN(wijwihwjh)31
有向三角形数量 t i → t_i^{ \rightarrow } ti
= 1 2 ∑ j , h ∈ N ( a i j + a j i ) ( a i h + a h i ) ( a j h + a h j ) = \frac{1}{2} \sum_{j,h \in N} (a_{ij} + a_{ji}) (a_{ih} + a_{hi}) (a_{jh} + a_{hj}) =21j,hN(aij+aji)(aih+ahi)(ajh+ahj)
整合度量:特征路径长度特征路径长度是网络的一个度量(例如,Watts 和 Strogatz,1998),
L = 1 n ∑ i ∈ N L i = 1 n ∑ i ∈ N ∑ j ∈ N , j ≠ i d i j n − 1 L = \frac{1}{n} \sum_{i \in N} L_i = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} d_{ij}}{n - 1} L=n1iNLi=n1iNn1jN,j=idij
其中 L i L_{i} Li 是节点 i i i 与所有其他节点之间的平均距离。
加权特征路径长度 L w L^w Lw
L w = 1 n ∑ i ∈ N ∑ j ∈ N , j ≠ i d i j w n − 1 L^w = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} d_{ij}^w}{n - 1} Lw=n1iNn1jN,j=idijw
有向特征路径长度 L → L^{ \rightarrow } L ,
L → = 1 n ∑ i ∈ N ∑ j ∈ N , j ≠ i d i j n − 1 L^{ \rightarrow } = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \in N, j \neq i} d_{ij}}{n - 1} L=n1iNn1jN,j=idij

待更新完善……

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值