Whisper.cpp本地化:Windows端部署详解与实操

简介

什么是Whisper?

OpenAI的Whisper是一个自动语音识别(ASR)系统,它经过了大量多语言和多任务的监督数据训练,能够进行多语言语音识别、语音翻译和语言识别等任务。Whisper模型使用了一个编码器-解码器的Transformer架构,通过训练能够将输入的音频转换为对应的文本序列,并能够根据特殊的标记执行不同的任务。Whisper模型的训练数据集非常庞大,包含了68万小时的多语言音频数据,这使得它在语音识别上达到接近人类水平的鲁棒性和准确性。

什么是Whisper.cpp?

whisper.cpp 是一个开源项目,它是对 OpenAI 的 Whisper 模型的 C/C++ 移植实现。Whisper 模型是一个强大的自动语音识别(ASR)系统,而 whisper.cpp 项目使得这个模型能够在不同的平台上以本地方式运行,包括但不限于 Windows、Mac OS、Linux、Android 和 WebAssembly 等。

为什么使用Whisper.cpp?

whisper.cpp 是对 OpenAI 的 Whisper 模型的 C/C++ 移植版本,它相比原始的 Whisper 模型(通常是以 Python 编写,依赖于 TensorFlow 或 PyTorch 等深度学习框架)具有以下优势:

  1. 无依赖性whisper.cpp 不需要安装任何第三方的库或框架,只需要一个 C/C++ 编译器就可以编译和运行,这减少了对外部库的依赖。

  2. 内存占用低:它的内存占用非常低,只需要几兆字节的内存就可以处理音频数据,这使得它适合在资源受限的设备上运行。

  3. 跨平台性能whisper.cpp 支持多种技术和平台,包括 Apple Silicon、ARM NEON、Metal、Core ML、AVX、OpenCL、CUDA 等,可以在 Mac OS、iOS、Linux、Windows、Android、WebAssembly 等多种操作系统上运行。

  4. 高性能:它利用多核和并行计算的优势,实现高效的语音识别,可以在 CPU、GPU 或其他加速器上运行,提供高性能的推理能力。

  5. 混合精度和整数量化:支持使用不同的精度来运行 Whisper 模型,例如 32 位浮点数、16 位浮点数、8 位整数等。这可以根据不同的设备和需求,平衡模型的大小、速度和准确度。

  6. 零运行时内存分配whisper.cpp 在运行时不会进行动态内存分配,有助于提高性能和稳定性。

  7. 支持 CPU 独占推理:即使在没有 GPU 的设备上也能运行,提供 CPU 独占的推理能力。

  8. 轻量级实现:整个模型的高级实现都包含在 whisper.hwhisper.cpp 中,使得集成到不同平台和应用变得容易。

  9. C-style API:提供了 C 风格的 API,便于与其他语言和框架集成。

  10. 支持量化:支持整数量化的模型,量化模型需要的内存和磁盘空间更少,并且可能在某些硬件上更高效。

  11. 支持 Docker:提供了 Docker 镜像,简化了部署和使用过程。

  12. 社区支持:有活跃的社区支持,提供了多种语言的绑定和示例,方便开发者使用和集成。

这些优势使得 whisper.cpp 成为一个轻量级、高性能、易于集成的自动语音识别解决方案,适用于需要实时、离线、通用和轻量级语音识别的场景。

本篇博客将介绍如何使用Whisper.cpp工具来为 Windows 上的视频文件生成字幕。

需要准备的工具

在使用Whisper.cpp之前需要安装好下面四个工具:

  1. VC Redistributable
    提供运行时支持:当编译C++应用程序时,编译器会生成二进制代码,但可能不会包含所有必要的库。VC Redistributable包含这些库,确保应用程序在运行时可以访问所需的函数和资源。

    提高兼容性:不同的应用程序可能使用不同的库版本,VC Redistributable提供了一个统一的库集合,减少应用程序之间的兼容性问题。

    在下载地址中选择适合自己电脑的版本下载,下载地址

  2. Whisper.cpp v1.6.0
    下载地址

  3. Model
    下载地址

  4. FFMPEG
    FFMPEG是一个开源的计算机程序,主要用于处理音频和视频文件。它支持多种格式转换、录制、编辑和流化等功能。下载地址
    ffmpeg版本选择

开始

1. 文件格式转换

由于 whisper.cpp 目前只支持 16 khzwav 文件格式的文件,需要先使用 ffmpeg 将mp4文件转成所需的格式。
在cmd命令窗口将路径切换到"ffmpeg/bin"的安装目录,执行以下指令:

ffmpeg.exe -i "xxx.mp4" -ar 16000 -acodec pcm_s16le xxx.wav

"xxx.mp4"为需要转换的mp4文件,"xxx.wav"是转换后的wav文件。这两处需要自行修改

2. Whisper模型下载

即上面需要【准备的工具中的3.model】。关于模型的详细信息可以在Whisper.cpp github官网关于模型介绍部分查阅

3. 使用Whisper实现自动语音识别

在cmd命令窗口将路径切换到"whisper"的安装目录,执行以下指令:

main.exe -m "model_path" "xxx.wav" -osrt

"model_path"是下载的模型存放的绝对路径,"xxx.wav"是在【1.文件格式转换】后的wav文件,-osrt是参数,下面会详细说明。
例如,我使用了ggml-large-v3.bin对new.wav文件做自动语音识别,执行以下指令:

main.exe -m "C:\Users\50533\Desktop\whisper\ggml-large-v3.bin" "new.wav" -osrt -l Chinese

执行结果如下(展示部分内容):
在这里插入图片描述

关于自动语音识别的具体参数(包括文件存储、gpu使用、语言设置等等)可以执行main.exe查看

main.exe

在这里插入图片描述

4. 备注

在上面的演示中我们在每次重新打开cmd窗口时都需要将路径切换到”ffmpeg“/"whisper"的安装目录才能使用,这样有些麻烦。
如果将Whisper和ffmpeg添加至系统路径(就是将Whisper\ffmpeg-7.0.1-essentials_build\bin高级系统设置中-环境变量-系统-Path加入),这样我们能在任何目录运行它!

可能遇到的问题

1. windows系统无法输出中文字符,出现乱码问题

问题如下图所示:
在这里插入图片描述

原因

cmd命令行窗口字符编码不匹配导致。

解决方法

  1. win+R输入redit进入注册表
  2. 找到计算机\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Command Processor,双击AutoRun项,将其数值数据改为chcp 65001,点击确定。

图片1描述 图片2描述

  1. 重启cmd后生效
    在这里插入图片描述
  2. 执行Whisper语音自动识别命令,可以看到成功输出中文

图片1描述 图片2描述

问题解决方案参考:
【Github】chinese characters not showing up on windows
【CSDN】CMD中文乱码
【CSDN】cmd窗口汉字显示乱码
【CSDN】Win10系统下CMD显示乱码的解决方法

2. ‘chcp’ 不是内部或外部命令,也不是可运行的程序或批处理文件

原因

出现 'chcp' 不是内部或外部命令,也不是可运行的程序或批处理文件。 这个错误通常意味着你的系统无法识别 chcp 命令。chcp 是一个命令行工具,用于更改Windows系统的代码页,以支持不同的字符集。
这个错误可能由以下几个原因造成:

  1. 命令提示符(cmd)被损坏:这可能是因为系统文件损坏或缺失。
  2. 环境变量问题:chcp 命令所在的路径可能没有添加到系统的环境变量 PATH 中。
  3. 操作系统版本:某些版本的Windows可能不支持或不包含chcp命令。

解决方法

  • 检查环境变量:确保 chcp 命令的路径(通常是 %SystemRoot%\System32)已经被添加到环境变量 PATH 中。
  • 使用管理员权限运行命令提示符:右键点击命令提示符图标,选择“以管理员身份运行”,然后再次尝试使用 chcp 命令。
  • 修复或重新安装命令提示符:如果命令提示符被损坏,可能需要修复或重新安装它。
  • 使用其他命令:如果 chcp 命令不可用,你可以尝试使用其他命令来达到相同的目的,例如使用 mode 命令查看和设置代码页。
<think>好的,我现在需要帮助用户了解如何将AI技术应用于机器小狗设备,特别是AI接入方案的开发教程。首先,我需要整理用户的问题,明确他们的需求。用户提到了引用中的内容,包括Spring AI、OpenAI的文字生成图片功能以及机器小狗的应用场景,所以需要结合这些信息给出解决方案。 首先,我应该考虑机器小狗需要哪些AI技术。可能包括语音交互、视觉识别、运动控制等。根据引用中的资料,Spring AI可能是一个合适的框架,因为它简化了大模型的通信,用户可能希望利用现有的Spring生态系统来集成AI功能。 接下来,需要分步骤说明开发方案。第一步是硬件准备,包括选择合适的控制器和传感器。比如树莓派或Jetson Nano作为主控,摄像头、麦克风等传感器是必要的。然后,操作系统和开发环境搭建,安装Ubuntu和ROS系统,这样方便后续的机器人开发。 然后是AI功能模块开发。这里可能需要引用用户提到的OpenAI的DALL-E模型生成图片,但机器小狗更可能需要的是视觉识别和语音交互。比如,使用Spring AI接入ChatGPT处理自然语言,或者用视觉模型进行物体识别。需要确保这些模块能够硬件交互,比如通过ROS节点发布控制指令。 系统集成方面,可能需要用Spring Boot作为后,处理AI服务的请求,并通过ROS硬件通信。例如,当用户发出语音指令时,Spring应用调用ChatGPT生成响应,再通过ROS控制机器小狗的动作。同时,引用中提到Spring AI简化了大模型的通信,这可能涉及到使用OpenAiImageOptions等参数配置,如引用[2]和[3]所述。 优化测试部分,需要考虑实时性和功耗,确保AI模型在嵌入式设备上运行流畅。可能需要对模型进行轻量化处理,比如使用TensorFlow Lite。同时,安全性和稳定性也很重要,比如加入异常处理机制。 最后,生成相关问题,帮助用户深入探讨。例如,如何优化硬件性能,或者处理多模态数据。需要确保问题覆盖用户可能感兴趣的方面,并引用提供的资料中的内容,比如AIGC工具的使用,如引用[1]提到的AI绘画教程,可能和机器小狗的视觉生成有关联。 需要检查是否遵循了系统级指令,比如数学公式的格式是否正确,使用中文回答,结构是否清晰。同时,确保引用标识正确添加,如引用[2]和[3]提到的Spring AI和OpenAI集成。可能还需要验证提到的技术方案是否可行,比如ROSSpring Boot的整合是否常见,或者是否有更好的替代方案。 总结来说,整个思考过程需要结合用户提供的引用资料,特别是Spring AI的应用,以及机器小狗的具体需求,分步骤给出开发方案,并确保回答结构清晰,符合用户的要求。</think>### 机器小狗AI接入方案开发教程 #### 一、方案设计思路 1. **核心功能需求** - **语音交互**: 通过自然语言处理(NLP)实现指令识别和对话 - **视觉感知**: 使用计算机视觉(CV)进行环境识别、目标追踪 - **运动控制**: 基于AI算法优化步态规划和避障 - **情感交互**: 通过生成式AI模拟情绪反馈(如摇尾巴、声音变化) 2. **技术选型建议** - **框架**: 采用`Spring AI`简化大模型接入流程[^3] - **模型**: - 语音识别: OpenAI Whisper - 图像生成: DALL-E 2[^2](用于生成交互场景) - 决策模型: 轻量化TensorFlow Lite模型 - **硬件**: - 主控: NVIDIA Jetson Nano(支持边缘计算) - 传感器: RGB-D摄像头、麦克风阵列、IMU模块 #### 二、开发步骤详解 ##### 1. 环境搭建 ```bash # 安装Spring AI依赖 <dependency> <groupId>org.springframework.ai</groupId> <artifactId>spring-ai-openai-spring-boot-starter</artifactId> <version>0.8.1</version> </dependency> ``` ##### 2. 语音交互模块 ```java // Spring AI集成示例 @RestController public class VoiceController { @Autowired private OpenAiChatClient chatClient; @PostMapping("/process-command") public String handleCommand(@RequestBody String audioInput) { String prompt = SpeechToText(audioInput); // 语音转文本 return chatClient.generate(prompt); // 调用ChatGPT生成响应 } } ``` ##### 3. 视觉处理模块 ```python # 使用OpenCV+DALL-E的图像处理示例 import cv2 from springai.openai import OpenAiImageClient def generate_navigation_map(frame): client = OpenAiImageClient(api_key="your_key") options = OpenAiImageOptions(prompt="生成导航路径图", model="dall-e-2") return client.generate(frame, options) ``` ##### 4. 运动控制集成 ```cpp // ROS节点控制示例(C++) #include <ros/ros.h> void moveCallback(const std_msgs::String::ConstPtr& msg) { if(msg->data == "前进") { // 调用舵机控制函数 set_servo_angle(45); } } int main(int argc, char **argv) { ros::init(argc, argv, "motion_control"); ros::NodeHandle nh; ros::Subscriber sub = nh.subscribe("ai_command", 1000, moveCallback); ros::spin(); return 0; } ``` #### 三、关键技术优化 1. **边缘计算优化** $$ E_{total} = \sum_{i=1}^{n} (E_{compute}^i + E_{transmit}^i) $$ 通过量化压缩模型,降低计算能耗[^1] 2. **多模态融合** 使用`注意力机制`融合视觉、语音、传感器数据: $$ \alpha_i = \frac{\exp(f(q,k_i))}{\sum_j \exp(f(q,k_j))} $$ 3. **安全防护** - 网络隔离: 关键控制指令走本地总线 - 异常检测: 使用LSTM预测运动状态异常 #### 四、开发注意事项 1. **硬件兼容性** - 确保AI框架支持ARM架构(Jetson Nano为ARMv8) - 摄像头驱动适配OpenCV4.x版本 2. **实时性保障** - 控制指令响应延迟需<200ms - 采用ROS2的实时通信机制 3. **模型轻量化** - 使用TensorFlow Lite转换工具: ```python converter = tf.lite.TFLiteConverter.from_saved_model(model_dir) converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_model = converter.convert() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值