自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(124)
  • 收藏
  • 关注

原创 Overleaf中导入Elsevier模板报错——Package hyperref Warning: Ignoring empty anchor on input line 202.

使用下载的复杂模板使用overleaf编译会出现警告。

2024-07-16 14:42:53 404

原创 opencv报错——If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config

解决方法:网站

2024-05-24 13:22:19 398

原创 pycharm在终端处删除连接过的服务器

打开设置处的SSH配置进行删除。

2023-12-15 12:17:19 2081

原创 光学遥感显著目标检测初探笔记总结

一张图片里最吸引注意力的部分就是显著性物体,其实是模拟人的一个注意力机制。目标是希望通过计算机的方法让我们自动定位和模拟人的这种感知能力,从而去定位场景中的一个让人感兴趣的目标。

2023-12-09 16:57:12 1347

原创 论文阅读——Multi-Content Complementation Network for Salient Object Detection in Optical Remote Sensing

整个网络集合前景,边缘,背景,全局信息的特征信息。

2023-11-27 18:17:20 1007

原创 关于chrome浏览器书签同步不及时如何解决

然后点击Trigger GetUpdates。

2023-11-27 15:32:10 840

原创 训练日志——wandb

通过观察 (parameters 板块中) 参数值的分布是否趋于稳定,以及 梯度是否收敛到趋近于0,可以判断当前模型的收敛情况。会将数据记录到当前的历史记录,换句话说就是每次运行到这里,系统就会将log内的参数值自动上传更新,一般数据会直接绘制成表格。用于跟踪模型以及跟踪模型中的参数和梯度,并且支持可视化的展示训练过程中的参数和梯度的动态变化。这个函数的作用与平常定义类里面的init函数作用类似,都是起初始化的作用。用于通知 Wandb 服务器该运行已经结束,并将所有数据上传到服务器。

2023-11-25 15:03:36 1869

原创 训练日志——logging

filemode是文件写入方式:1.‘w’:覆盖文件中现有数据 2.‘a’ : 追加到文件末尾。filename是若不指定此配置,默认打印在控制台;指定后,打印到指定路径文件。不设置参数name 的话,默认记录器的名字为 ‘root’参考了b站的Enzo大佬做的笔记,有关例子可见其网站。datefmt是修改 asctime 的时间格式。level是指定日志的打印级别。format是日志输出格式。

2023-11-25 13:44:13 440

原创 论文阅读——CRNet: Channel-Enhanced Remodeling-Based Network for Salient Object Detection in Optical

总的来说,浅层特征和深层特征走的路径不同。

2023-11-23 21:33:17 1157 1

原创 论文阅读——Edge-Aware Multiscale Feature Integration Network for Salient Object Detection in Optical

这篇论文先对图像做了2个不同下采样,形成3个不同的路径,选取3个不同路径的最后一层特征,进行特征聚合,形成最后一个特征F5,再将原图像的前四层特征和最后一层特征送入后续的边缘改进模块,边缘改进模块在最后一层的特征中使用了一个桥模块,桥模块相当于过了并行的四个不同大小的空洞卷积,以扩大感受野并捕获强大的全局上下文。

2023-11-22 21:34:32 539 1

原创 运行代码时不同软件的命令行参数写法

如下图所示,不同参数间不需要什么间隔什么东西。如下图所示,不同参数间需要用一个符号来间隔。

2023-11-22 18:05:54 481

原创 论文阅读——Adaptive Edge-Aware Semantic Interaction Network for Salient Object Detection in Optical

相比之下,图卷积网络(GCN)具有良好的能力,可以使用图卷积来提取长距离上下文,以执行不同顶点之间的交互。此外,研究人员通常只提取编码器单层输出的上下文信息,忽略了编码器不同块输出之间的相关性。因此,我们充分探索相关性并连接编码器最深的三个块的输出,以在输出信息中对多尺度上下文进行建模。具有不同膨胀率的膨胀卷积确实可以在多尺度信息的提取中发挥更好的作用,但研究人员往往忽略了不同大小的特征图对多尺度信息提取的影响。为此,我们提出了一个新的模块,名为MFEM,它可以提取有效的多尺度信息在不同尺度的特征图。

2023-11-21 20:39:33 382

原创 关于校园网使用罗技flow功能

我目前设备是一台Macbook air m1处理器,学校给配了一台windows台式,台式机不能连蓝牙,不能连wifi,只能用网线,我的需求是想让mac和windows共用一套键鼠,在了解到罗技flow技术后,买了K855键盘配上M720鼠标,此处注意一个细节罗技的设备如果是双模(也就是蓝牙配上接收器),如果设备支持3个设备快速切换,1号位设备一定要给接收器,不然会有bug。

2023-11-21 17:09:31 1131

原创 linux上的代码在windows上运行

例如/user/have/good/days例如。

2023-11-20 20:55:13 123

原创 detectron2安装

右侧选择MSVC v143、适用于最新v143生成工具的C++ ATL以及Windows 10 SDK。安装完后在安装目录里搜索cl这个exe文件,将其目录加入到环境变量中。用git进行下载,下载到你需要的位置,用的是启智社区提供的镜像源。建议直接照着官方文档,我当时记得是一步安装成功。安装microsoft studio,左侧选择使用C++的桌面开发。略微麻烦,听我娓娓到来。

2023-11-20 14:41:04 272

原创 论文阅读——Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images

对数据集ORSSD和EORSSD进行60个epoch训练,采用翻转和旋转相结合的数据增强技术提高训练样本的多样性,每个样本产生7个变体,前20个阶段的学习速率固定为1e−4,然后平均下降到1e−6。光学遥感图像显著目标检测的密集注意流体网络。对数据集ORSSD和EORSSD进行测试。用到了DAFNet的数据增强方法。边缘损失BCE和显著图损失BCE。

2023-11-17 14:58:35 97

原创 论文阅读——Boundary-Aware Network With Two-Stage Partial Decoders for Salient Object Detection in Remote

100个epoch的adam优化器进行优化,学习率初始为1e-4,当训练损失趋于平缓时,学习率下降10%,数据增强采用与DAFNet相同的方法,本文没有使用任何后处理过程如CRF。使用ORSSD,EORSSD,ORSI4199,RSISOD这四个数据集进行训练。使用ORSSD,EORSSD,ORSI4199,RSISOD这四个数据集进行测试。这篇运用了四个数据集,包括本文提出的一个新的数据集RSISOD。基于两阶段部分解码器的遥感图像显著目标检测边界感知网络。两个解码器,用VGG最后三层进行解码。

2023-11-17 12:40:53 130

原创 论文阅读——Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing

ORSSD和EORSSD进行训练,初始学习率为1e-4,数据增加采用翻转和旋转,产生原始训练数据的7个变体,使用matlab写的脚本。引入相邻层特征间的特征交互是捕获跨层上下文互补信息的有效策略。这对于光学rsi中细化细节和确定显著目标位置是有效的。这篇是显著性检测结合遥感图像的,之前截图版写过,但觉得重要,故再详细写一遍。光学遥感图像显著目标检测的邻域协调网络。ORSSD和EORSSD进行测试。普通BCE和IOU结合。

2023-11-17 11:49:15 137

原创 kaggle项目部署

点击dataset下的new dataset上传项目,如果使用的是自己的数据集,也需要一并上传(再将原本项目的train文件下的代码复制粘贴到上图中的代码区,但需要做如下修改。要放到后台运行,点击右上角的save version,具体原因见最后。然后进入code代码区,创建一个notebook。点击右边的add data,选择刚才上传的项目。最后选择GPU或者TPU来运行。

2023-11-16 13:24:53 534

原创 MMCV安装

官方网站:https://mmcv.readthedocs.io/en/latest/get_started/installation.html

2023-10-30 20:19:37 89

原创 更换数据集导致错误OSError: Unrecognized data stream contents when reading image file

以png为例,如果不想看二进制开头可注释掉。比如我的png格式图片要一样的开头时。

2023-10-29 17:33:34 566

原创 linux常用命令

想通过终端编辑代码文件并保存。查看一部分,防止代码过长。

2023-10-22 16:09:49 260

原创 论文阅读——I Can Find You! Boundary-Guided Separated Attention Network for Camouflaged Object Detection

传统上,可以采用显著目标检测(SOD)技术对COD的任务;或者开发各种手工特性来处理COD。不幸的是,被伪装的物体往往尽可能地将自己隐藏在背景中,而不是像显著物体那样突出自己。这些(SOD)技术甚至手工制作的精细COD特征都不够灵敏,无法捕捉到任何伪装对象与其背景之间的细微差异,导致COD结果不佳。用于伪装对象检测的边界引导分离注意网络。

2023-10-09 14:42:45 269

原创 论文阅读——Pixels, Regions, and Objects: Multiple Enhancement for Salient Object Detection

对于SOD来说,精确分割复杂物体的边界仍然是一个具有挑战性的任务。当这些物体的几何形状和/或边界复杂时,或者当场景混乱或混乱时,这一点尤其正确。像素,区域和对象:多增强显著目标检测。

2023-10-09 10:53:01 207

原创 论文阅读——Texture-guided Saliency Distilling for Unsupervised Salient Object Detection

基于纹理引导的显著性提取的无监督显著性目标检测。

2023-10-08 20:20:41 182

原创 可视化模块

送入的数据为imgs,其大小为(8,3,256,256),并以2行8列进行展示。

2023-10-08 14:03:50 353

原创 论文阅读——Large Selective Kernel Network for Remote Sensing Object Detection

首先,我们将不同感受野范围的不同核的特征进行串联,然后采用基于通道的平均和最大池化方法有效地提取空间关系,将空间融合的特征进行串联,并使用卷积层将融合的特征(2通道)转换为N个空间注意图,对于每个空间注意图̂SAi,使用一个sigmoid激活函数,对分解后的每个大核分别获得单个空间选择掩码,将分解后的大核序列中的特征按其对应的空间选择掩模加权,再经卷积层融合得到注意特征S。相反,这些物体的成功识别往往依赖于它们的上下文,因为周围的环境可以提供关于它们的形状、方向和其他特征的有价值的线索。

2023-10-07 15:18:03 1599 1

原创 论文阅读——Pyramid Grafting Network for One-Stage High Resolution Saliency Detection

都将SOD划分语义(低分辨率)阶段和详细(高分辨率)阶段,导致2个问题(1)阶段之间的语境语义迁移不一致。此外,由于没有足够的语义支持,最后阶段的细化可能会继承甚至放大之前的错误,这意味着最终的显著性映射严重依赖于低分辨率网络的性能。与单阶段方法相比,多阶段方法不仅难以并行化,而且存在参数数量增加的潜在问题,使其速度较慢。随着输入分辨率的急剧增加,所提取特征的大小也随之增大,但由网络决定的感受野是固定的,使得相对感受野较小,最终导致无法捕获对SOD任务至关重要的全局语义。高分辨率下目前的两种方法。

2023-10-04 23:15:50 780 1

原创 前几周的阅读的论文(截图版)

SCI1区 2023。SCI1区 2023。SCI1区 2023。SCI4区 2023。

2023-10-04 16:21:57 236 3

原创 AutoDL云服务器的使用

使用此云服务器的优势学生认证,省钱可无卡模式启动,省钱上传数据比较方便网站。

2023-09-21 13:24:30 2619

原创 MacOS删除.DS_Store文件

在 Mac OS X 系统下,几乎绝大部分文件夹中都包含 .DS_Store 隐藏文件,这里保存着针对这个目录的特殊信息和设置配置,例如查看方式、图标大小以及这个目录的一些附属元数据。而在 OS X 系统中,这些文件是默认隐藏起来的,但是当我们将这些文件转移共享到 Windows 系统的时候,它们就会变成可见状态,并且看起来非常像是一些垃圾文件。在删除命令使用后再输入。

2023-09-18 16:34:18 626 1

原创 在pytorch中使用tensorboard

三个参数分别是标签名,值,步数。log_dir是写入地址。

2023-09-17 15:42:57 407

原创 PASCAL VOC2012数据集以及制作自己的数据集

github开源项目,形成的是xml文件格式

2023-09-13 14:38:29 118

原创 论文阅读——Co-Salient Object Detection with Co-Representation Purification

共同显著目标检测(Co-SOD)旨在发现相关图像组中的共同对象。挖掘共同表示对于定位共同显著目标至关重要。然而,当前的Co-SOD方法并未充分关注与共同显著对象无关的信息是否包含在共同表示中。共同表示中的此类不相关信息会干扰其定位共同显著对象。在本文中,我们提出了一种旨在寻找无噪声共同表示的共同表示净化(CoRP)方法。我们搜索可能属于共同显著区域的一些像素级嵌入。这些嵌入构成我们的共同表示并指导我们的预测。为了获得更纯净的共同表示,我们使用预测来迭代减少共同表示中的不相关嵌入。

2023-09-07 16:58:37 901 3

原创 pytorch无限♾️️学习

定义类打印每层的参数大小自动微分详见文章Variable需要优化的参数需要加,会计算这些参数对于loss的梯度计算梯度计算导数禁用梯度追踪训练好后进行测试,也就是不要更新参数时使用

2023-09-07 11:44:44 903

原创 不同代码写法的区别

此处784是我特征数量。

2023-08-29 19:27:11 297

原创 AI有关的相关术语

卷积神经网络输出特征图上的像素点,对应在原始图像上所能看到区域的大小称之为“感受野”,卷积层次越深、特征图越小,特征图上每个像素对应的感受野越大,语义信息表征能力越强,但是特征图的分辨率较低,几何细节信息表征能力较弱;特征图越大,特征图上每个像素对应的感受野越小,几何细节信息表征能力强,特征图分辨率较高,但语义表征能力较弱。(2)对于特征图上的每一个点(称之为anchor point,锚点),生成具有不同 尺度 和 宽高比 的锚点框,这个锚点框的坐标(x,y,w,h)是在原图上的坐标。

2023-08-28 20:13:23 594

原创 图像特征提取与描述

【代码】图像特征提取与描述。

2023-08-20 19:37:31 223

原创 YOLOv2和YOLOv3基础

目录v2改进网络结构先验框感受野V3多scale残差网络架构先验框softmax层代替v2改进网络结构先验框感受野V3多scale残差网络架构先验框softmax层代替

2023-08-18 12:48:38 327

原创 YOLOv1基础

预选框,在论文中叫RPN,也就是区域建议网络。

2023-08-18 00:20:42 243

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除