- 博客(124)
- 收藏
- 关注
原创 Overleaf中导入Elsevier模板报错——Package hyperref Warning: Ignoring empty anchor on input line 202.
使用下载的复杂模板使用overleaf编译会出现警告。
2024-07-16 14:42:53 404
原创 opencv报错——If you are on Ubuntu or Debian, install libgtk2.0-dev and pkg-config
解决方法:网站
2024-05-24 13:22:19 398
原创 光学遥感显著目标检测初探笔记总结
一张图片里最吸引注意力的部分就是显著性物体,其实是模拟人的一个注意力机制。目标是希望通过计算机的方法让我们自动定位和模拟人的这种感知能力,从而去定位场景中的一个让人感兴趣的目标。
2023-12-09 16:57:12 1347
原创 论文阅读——Multi-Content Complementation Network for Salient Object Detection in Optical Remote Sensing
整个网络集合前景,边缘,背景,全局信息的特征信息。
2023-11-27 18:17:20 1007
原创 训练日志——wandb
通过观察 (parameters 板块中) 参数值的分布是否趋于稳定,以及 梯度是否收敛到趋近于0,可以判断当前模型的收敛情况。会将数据记录到当前的历史记录,换句话说就是每次运行到这里,系统就会将log内的参数值自动上传更新,一般数据会直接绘制成表格。用于跟踪模型以及跟踪模型中的参数和梯度,并且支持可视化的展示训练过程中的参数和梯度的动态变化。这个函数的作用与平常定义类里面的init函数作用类似,都是起初始化的作用。用于通知 Wandb 服务器该运行已经结束,并将所有数据上传到服务器。
2023-11-25 15:03:36 1869
原创 训练日志——logging
filemode是文件写入方式:1.‘w’:覆盖文件中现有数据 2.‘a’ : 追加到文件末尾。filename是若不指定此配置,默认打印在控制台;指定后,打印到指定路径文件。不设置参数name 的话,默认记录器的名字为 ‘root’参考了b站的Enzo大佬做的笔记,有关例子可见其网站。datefmt是修改 asctime 的时间格式。level是指定日志的打印级别。format是日志输出格式。
2023-11-25 13:44:13 440
原创 论文阅读——CRNet: Channel-Enhanced Remodeling-Based Network for Salient Object Detection in Optical
总的来说,浅层特征和深层特征走的路径不同。
2023-11-23 21:33:17 1157 1
原创 论文阅读——Edge-Aware Multiscale Feature Integration Network for Salient Object Detection in Optical
这篇论文先对图像做了2个不同下采样,形成3个不同的路径,选取3个不同路径的最后一层特征,进行特征聚合,形成最后一个特征F5,再将原图像的前四层特征和最后一层特征送入后续的边缘改进模块,边缘改进模块在最后一层的特征中使用了一个桥模块,桥模块相当于过了并行的四个不同大小的空洞卷积,以扩大感受野并捕获强大的全局上下文。
2023-11-22 21:34:32 539 1
原创 论文阅读——Adaptive Edge-Aware Semantic Interaction Network for Salient Object Detection in Optical
相比之下,图卷积网络(GCN)具有良好的能力,可以使用图卷积来提取长距离上下文,以执行不同顶点之间的交互。此外,研究人员通常只提取编码器单层输出的上下文信息,忽略了编码器不同块输出之间的相关性。因此,我们充分探索相关性并连接编码器最深的三个块的输出,以在输出信息中对多尺度上下文进行建模。具有不同膨胀率的膨胀卷积确实可以在多尺度信息的提取中发挥更好的作用,但研究人员往往忽略了不同大小的特征图对多尺度信息提取的影响。为此,我们提出了一个新的模块,名为MFEM,它可以提取有效的多尺度信息在不同尺度的特征图。
2023-11-21 20:39:33 382
原创 关于校园网使用罗技flow功能
我目前设备是一台Macbook air m1处理器,学校给配了一台windows台式,台式机不能连蓝牙,不能连wifi,只能用网线,我的需求是想让mac和windows共用一套键鼠,在了解到罗技flow技术后,买了K855键盘配上M720鼠标,此处注意一个细节罗技的设备如果是双模(也就是蓝牙配上接收器),如果设备支持3个设备快速切换,1号位设备一定要给接收器,不然会有bug。
2023-11-21 17:09:31 1131
原创 detectron2安装
右侧选择MSVC v143、适用于最新v143生成工具的C++ ATL以及Windows 10 SDK。安装完后在安装目录里搜索cl这个exe文件,将其目录加入到环境变量中。用git进行下载,下载到你需要的位置,用的是启智社区提供的镜像源。建议直接照着官方文档,我当时记得是一步安装成功。安装microsoft studio,左侧选择使用C++的桌面开发。略微麻烦,听我娓娓到来。
2023-11-20 14:41:04 272
原创 论文阅读——Dense Attention Fluid Network for Salient Object Detection in Optical Remote Sensing Images
对数据集ORSSD和EORSSD进行60个epoch训练,采用翻转和旋转相结合的数据增强技术提高训练样本的多样性,每个样本产生7个变体,前20个阶段的学习速率固定为1e−4,然后平均下降到1e−6。光学遥感图像显著目标检测的密集注意流体网络。对数据集ORSSD和EORSSD进行测试。用到了DAFNet的数据增强方法。边缘损失BCE和显著图损失BCE。
2023-11-17 14:58:35 97
原创 论文阅读——Boundary-Aware Network With Two-Stage Partial Decoders for Salient Object Detection in Remote
100个epoch的adam优化器进行优化,学习率初始为1e-4,当训练损失趋于平缓时,学习率下降10%,数据增强采用与DAFNet相同的方法,本文没有使用任何后处理过程如CRF。使用ORSSD,EORSSD,ORSI4199,RSISOD这四个数据集进行训练。使用ORSSD,EORSSD,ORSI4199,RSISOD这四个数据集进行测试。这篇运用了四个数据集,包括本文提出的一个新的数据集RSISOD。基于两阶段部分解码器的遥感图像显著目标检测边界感知网络。两个解码器,用VGG最后三层进行解码。
2023-11-17 12:40:53 130
原创 论文阅读——Adjacent Context Coordination Network for Salient Object Detection in Optical Remote Sensing
ORSSD和EORSSD进行训练,初始学习率为1e-4,数据增加采用翻转和旋转,产生原始训练数据的7个变体,使用matlab写的脚本。引入相邻层特征间的特征交互是捕获跨层上下文互补信息的有效策略。这对于光学rsi中细化细节和确定显著目标位置是有效的。这篇是显著性检测结合遥感图像的,之前截图版写过,但觉得重要,故再详细写一遍。光学遥感图像显著目标检测的邻域协调网络。ORSSD和EORSSD进行测试。普通BCE和IOU结合。
2023-11-17 11:49:15 137
原创 kaggle项目部署
点击dataset下的new dataset上传项目,如果使用的是自己的数据集,也需要一并上传(再将原本项目的train文件下的代码复制粘贴到上图中的代码区,但需要做如下修改。要放到后台运行,点击右上角的save version,具体原因见最后。然后进入code代码区,创建一个notebook。点击右边的add data,选择刚才上传的项目。最后选择GPU或者TPU来运行。
2023-11-16 13:24:53 534
原创 MMCV安装
官方网站:https://mmcv.readthedocs.io/en/latest/get_started/installation.html
2023-10-30 20:19:37 89
原创 更换数据集导致错误OSError: Unrecognized data stream contents when reading image file
以png为例,如果不想看二进制开头可注释掉。比如我的png格式图片要一样的开头时。
2023-10-29 17:33:34 566
原创 论文阅读——I Can Find You! Boundary-Guided Separated Attention Network for Camouflaged Object Detection
传统上,可以采用显著目标检测(SOD)技术对COD的任务;或者开发各种手工特性来处理COD。不幸的是,被伪装的物体往往尽可能地将自己隐藏在背景中,而不是像显著物体那样突出自己。这些(SOD)技术甚至手工制作的精细COD特征都不够灵敏,无法捕捉到任何伪装对象与其背景之间的细微差异,导致COD结果不佳。用于伪装对象检测的边界引导分离注意网络。
2023-10-09 14:42:45 269
原创 论文阅读——Pixels, Regions, and Objects: Multiple Enhancement for Salient Object Detection
对于SOD来说,精确分割复杂物体的边界仍然是一个具有挑战性的任务。当这些物体的几何形状和/或边界复杂时,或者当场景混乱或混乱时,这一点尤其正确。像素,区域和对象:多增强显著目标检测。
2023-10-09 10:53:01 207
原创 论文阅读——Texture-guided Saliency Distilling for Unsupervised Salient Object Detection
基于纹理引导的显著性提取的无监督显著性目标检测。
2023-10-08 20:20:41 182
原创 论文阅读——Large Selective Kernel Network for Remote Sensing Object Detection
首先,我们将不同感受野范围的不同核的特征进行串联,然后采用基于通道的平均和最大池化方法有效地提取空间关系,将空间融合的特征进行串联,并使用卷积层将融合的特征(2通道)转换为N个空间注意图,对于每个空间注意图̂SAi,使用一个sigmoid激活函数,对分解后的每个大核分别获得单个空间选择掩码,将分解后的大核序列中的特征按其对应的空间选择掩模加权,再经卷积层融合得到注意特征S。相反,这些物体的成功识别往往依赖于它们的上下文,因为周围的环境可以提供关于它们的形状、方向和其他特征的有价值的线索。
2023-10-07 15:18:03 1599 1
原创 论文阅读——Pyramid Grafting Network for One-Stage High Resolution Saliency Detection
都将SOD划分语义(低分辨率)阶段和详细(高分辨率)阶段,导致2个问题(1)阶段之间的语境语义迁移不一致。此外,由于没有足够的语义支持,最后阶段的细化可能会继承甚至放大之前的错误,这意味着最终的显著性映射严重依赖于低分辨率网络的性能。与单阶段方法相比,多阶段方法不仅难以并行化,而且存在参数数量增加的潜在问题,使其速度较慢。随着输入分辨率的急剧增加,所提取特征的大小也随之增大,但由网络决定的感受野是固定的,使得相对感受野较小,最终导致无法捕获对SOD任务至关重要的全局语义。高分辨率下目前的两种方法。
2023-10-04 23:15:50 780 1
原创 MacOS删除.DS_Store文件
在 Mac OS X 系统下,几乎绝大部分文件夹中都包含 .DS_Store 隐藏文件,这里保存着针对这个目录的特殊信息和设置配置,例如查看方式、图标大小以及这个目录的一些附属元数据。而在 OS X 系统中,这些文件是默认隐藏起来的,但是当我们将这些文件转移共享到 Windows 系统的时候,它们就会变成可见状态,并且看起来非常像是一些垃圾文件。在删除命令使用后再输入。
2023-09-18 16:34:18 626 1
原创 论文阅读——Co-Salient Object Detection with Co-Representation Purification
共同显著目标检测(Co-SOD)旨在发现相关图像组中的共同对象。挖掘共同表示对于定位共同显著目标至关重要。然而,当前的Co-SOD方法并未充分关注与共同显著对象无关的信息是否包含在共同表示中。共同表示中的此类不相关信息会干扰其定位共同显著对象。在本文中,我们提出了一种旨在寻找无噪声共同表示的共同表示净化(CoRP)方法。我们搜索可能属于共同显著区域的一些像素级嵌入。这些嵌入构成我们的共同表示并指导我们的预测。为了获得更纯净的共同表示,我们使用预测来迭代减少共同表示中的不相关嵌入。
2023-09-07 16:58:37 901 3
原创 pytorch无限♾️️学习
定义类打印每层的参数大小自动微分详见文章Variable需要优化的参数需要加,会计算这些参数对于loss的梯度计算梯度计算导数禁用梯度追踪训练好后进行测试,也就是不要更新参数时使用
2023-09-07 11:44:44 903
原创 AI有关的相关术语
卷积神经网络输出特征图上的像素点,对应在原始图像上所能看到区域的大小称之为“感受野”,卷积层次越深、特征图越小,特征图上每个像素对应的感受野越大,语义信息表征能力越强,但是特征图的分辨率较低,几何细节信息表征能力较弱;特征图越大,特征图上每个像素对应的感受野越小,几何细节信息表征能力强,特征图分辨率较高,但语义表征能力较弱。(2)对于特征图上的每一个点(称之为anchor point,锚点),生成具有不同 尺度 和 宽高比 的锚点框,这个锚点框的坐标(x,y,w,h)是在原图上的坐标。
2023-08-28 20:13:23 594
原创 YOLOv2和YOLOv3基础
目录v2改进网络结构先验框感受野V3多scale残差网络架构先验框softmax层代替v2改进网络结构先验框感受野V3多scale残差网络架构先验框softmax层代替
2023-08-18 12:48:38 327
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人