数据结构第二次上机题

本文介绍了数据结构的逻辑分类,包括线性结构和非线性结构,并探讨了时间复杂度的基本概念。同时,提供了数组中按值查找元素的算法实现,以及寻找数组中最大值和次大值的方法。通过具体实例分析了不同算法的时间复杂度,强调了算法效率和可读性的重要性。
摘要由CSDN通过智能技术生成

1.逻辑结构与时间复杂度基础知识

2-1 关于逻辑结构
数据结构可以从逻辑上分成 ▁▁C▁▁▁ 两大类。
(5分)
A.动态结构和静态结构
B.紧凑结构和非紧凑结构
C.线性结构和非线性结构
D.内部结构和外部结构
2-2 数据逻辑结构可以分为(B )。
A.线性结构和图结构
B.集合结构、线性结构、树结构和图结构
C.顺序结构和链式结构
D.集合结构和非线性结构
2-3 算法分析的两个主要方面是( A )。
(5分)
A.空间复杂度和时间复杂度
B.正确性和简明性
C.可读性和文档性
D.数据复杂性和程序复杂性
2-4 算法设计的要求设计一个好的算法应该满足正确性、▁▁▁B▁▁、健壮性和高效性等要求。
A.稳定性
B.可读性
C.可靠性
D.可行性
2-5 算法的特性一个算法必须满足有限性、确定性、▁▁▁C▁▁、输入和输出等五个重要特性。
A.高效性
B.稳定性
C.可行性
D.可读性
2-6 执行下面程序段时,执行S语句的频度为(D)。

for(int i=0;i<n;i++)
for(int j=1;j<=i;j++)
     S;

A.n2
B.n2/2
C.n(n+1)
D.n(n+1)/2
2-7 下列程序段的时间复杂度为(B)。

x = n;     /*n > 1*/
y = 0;
while(x >= (y + 1) * (y + 1))
     y = y + 1;

A.Θ(n)
B.Θ(n½)
C.Θ(1)
D.Θ(n2)
2-8 时间复杂度分析
下面算法的时间复杂度为 ▁▁▁▁▁。

int foo(int n)
{
    int i, s = 0;
    for (i = 1; i * i <= n; ++i)
    {
        s += i;
    }
    return s;
}

A.O(n2)
B.O(n)
C.O(n½)
D.O(log2​n)
2-9 时间复杂度分析
下面算法的时间复杂度为 ▁▁D▁▁▁。

int foo(int n)
{
    int i, j, s = 0;
    for (i = 1; i <= n; ++i)
    {
        for (j = 1; j <= i; ++j)
        {
            s += i * j;
        }
    }
    return s;
}

A.O(n(n(1/2))​)
B.O(n)
C.O(nlog2​n)
D.O(n2)
2-10
时间复杂度分析
下面算法的时间复杂度为 ▁▁O(n)▁▁▁。

int foo(int n)
{
    int i, m = n / 2, s = 0;
    for (i = 1; i <= m; ++i)
    {
        s += i;
    }
    return s;
}

2-11

时间复杂度分析

下面算法的时间复杂度为 ▁▁O(n)▁▁▁。

int foo(int n)
{
    int i, s = 0;
    for (i = 1; i <= n; ++i)
    {
        s += i;
    }
    return s;
}

2-12

时间复杂度分析

下面算法的时间复杂度为 ▁▁▁▁▁。

int foo(int n)
{
    return n * (n + 1) / 2;
}

2.数组中按值找元素 (20 分)

在数组A[1…N]中查找值为k的元素,若找到输出其位置i(1<=i<=n),否则输出0作为标志。
函数接口定义:

Search(int a[],int n,int k);

其中 a 、 n、k 都是用户传入的参数。a 为数组名,期中存了n个整数,下标为1到n;k 为待查数据元素;若找到了,返回其下标;否则,返回0。
裁判测试程序样例:

#include <stdio.h>
Search(int a[],int n,int k);
main()
{
    int a[50],n,i,k;
    scanf("%d",&n);  //接收数组元素个数
    for(i=1;i<=n;i++)   //依次接收各个元素的值
        scanf("%d",&a[i]);
    scanf("%d",&k);      // 接收待查元素值k
    int x=Search(a,n,k);  
    if(x==0)
        printf("NONE\n");
    else
        printf("%d\n",x);

}

/* 请在这里填写答案 */

输入样例1:

5
67 48 90 34 25
34
结尾无空行

输出样例1:

4
结尾无空行

输入样例2:

6
45 67 89 9 7 5 56
34
结尾无空行

输出样例2:

NONE
结尾无空行

int Search(int a[],int n,int k)
{
	int i;
	int t=0;
	if(n==0)            //数组不存在时
	return 0;
	else
	{
		for(i=1;i<=n;i++)
		{
			if(a[i]==k)
			{
				return i;
			
			}
			else if(i==n)       //数字不在数组中
				return 0;
		}
	}
}

3. 找最大值和次大值 (20 分)

找出数组A[1…N]中最大值和次大值。(数组中元素个数大于两个且值各不相同)
函数接口定义:

void FindMax(int a[],int n,int *pmax1,int *pmax2);

其中 a 和 n 是用户传入的参数。 a为数组名, n为数组中元素的个数,在下标从1到n处存放。利用指针变量 pmax1和pmax2带出运算结果。 pmax1为指向最大值的指针;pmax2为指向次大值的指针。
裁判测试程序样例:

#include <stdio.h>
void FindMax(int a[],int n,int *pmax1,int *pmax2);
main()
{
    int a[50],n,i;
    int max1,max2;
    scanf("%d",&n);
    for(i=1;i<=n;i++)
        scanf("%d",&a[i]);
    FindMax(a,n,&max1,&max2);
    printf("%d %d\n",max1,max2);
}
/* 请在这里填写答案 */

输入样例:

5
32 45 57 8754 33
结尾无空行

输出样例:

8754 57
结尾无空行

void FindMax(int a[],int n,int *pmax1,int *pmax2){
 int i,j=1,k,t;
 for(i=1;i<=n;i++){
  for(j=i+1;j<=n;j++){
   if(a[i]<a[j]){
    t=a[i];a[i]=a[j];a[j]=t;//冒泡排序,取前两位
   }
  }
 }
 *pmax1=a[1];
 *pmax2=a[2];
 return 0;
}
很抱歉,我无法提供关于具体学校或课程的第四次上机内容。但是,我可以为您提供一些关于数据结构的基本知识和常见的上机目类型。 数据结构是计算机科学中非常重要的一门课程,它研究如何组织和存储数据以及如何有效地操作和管理数据。第四次上机可能涉及以下内容之一: 1. 树和图的应用:树和图是常见的数据结构,可以用于解决各种实际问,比如搜索、排序、最短路径等。在上机中,您可能需要实现树或图的基本操作,如插入、删除、遍历等。 2. 排序算法:排序是数据结构中的一个重要问,常见的排序算法有冒泡排序、插入排序、选择排序、快速排序、归并排序等。您可能需要实现其中一个排序算法,并对给定的数据进行排序。 3. 查找算法:查找是另一个常见的问,常见的查找算法有线性查找、二分查找、哈希查找等。您可能需要实现其中一个查找算法,并根据给定的条件查找特定的数据。 4. 动态规划:动态规划是一种解决最优化问的方法,它将问分解为子问,并通过保存子问的解来避免重复计算。您可能需要使用动态规划来解决给定的问,并实现相应的算法。 以上只是一些可能的内容,具体的上机要求可能会根据课程教学大纲和教师的要求而有所不同。如果您有具体的问或需要更详细的帮助,请提供更多信息,我将尽力回答您的问
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值