汉诺塔游戏的规则我相信大家都能够通过网络或游戏了解到,4399上就有,这里建议在写之前先玩上几把游戏了解一下,增加一点感性认知。
首先,咱们在使用递归函数之前需要了解堆栈的含义,通俗来讲,可以理解为函数在调用本身的时候,会暂时中断本次函数的运行,直到调用自己的函数结束,才会重新返回到断点,继续执行程序,也就是先进后出,后进先出。
对于汉诺塔来说,我们有三根柱子,我们将其示为A、B、C。我们需要做的就是将A上的所有盘子都移动到C上去。这里有一个很好理解的方法:将除n以外的盘子看为一个整体,这样我们移动的盘子就只有两个了。然后操作实现为:
n-1: A->B;
n: A->C;
n-1: B->C;
也就是将n-1的盘从A经由C移动到B上去,n的盘从A移动到C,然后n-1的盘从B经由A移动到C上去。
从n-1的盘子移动过程就必须认识到这是一个不断重复的过程,这里才是我们写递归的着手点。
void Hanoi(int n,char A,char B,char C)
{
if (n == 1)
move(A, C);
else
{
Hanoi(n - 1, A, C, B);
move(A, C);
Hanoi(n - 1, B, A, C);
}
}
第一句Hanoi(n-1,A,C,B)就是将整体n-1的盘子移动到B上去,可能有些朋友不太理解为什么可以这样移动,其实这里就利用了递归的特性,我们每一次传参时都将传入的n减去了1,也就是每一次调用这个函数,我们的盘子就会少一个,直到盘子数量为1,就像是套娃一样,一层一层的摘掉,直到最后一层。
中间的move()函数非常简单,也就是将n盘从A移动到C上,不管是多少层盘,这里都只有1步,所以不需要利用递归。
最后的Hanoi(n-1,A,C,B)意为将B上的n-1层盘移动到C上去,中间的道理和第一句是一模一样的,也是通过递归,将层数一层一层的剥离。
要是实在不能够理解其中的变化,我们也可以通过监视值来查看每次递归的变化。如果你是VS操作系统,可以按F10进入监视,然后添加监视变量,再按F10直到达到函数调用,按F11,然后不断地按F11来查看变量。
上图表示3层汉诺塔的递归循序,因为本人很懒,所以图很简陋,哈哈。其实主要是理解了其中的逻辑这样会更清晰。
从这个递归函数我们不难看出每进行一次函数的调用,除非层数为1,否则都会有两次操作,这也是我们的公式count = n^2 - 1的由来。
下面为主函数的书写和move函数的书写:
int count = 0; //全局变量
void move(char A, char C)
{
printf("%c->%c\n", A, C);
count++;
}
int main()
{
int n = 3;
Hanoi(n, 'A', 'B', 'C');
printf("\n当盘数为%d时,需要移动次%d\n", n,count);
return 0;
}
因为我们每一次的移动都是调用move函数,那么我们可以在这个函数里加上count++,每调用一次就代表我们移动一次,注意,此时的count为全局变量。这里我只是用了一种简单的方式描述,还有其它的写法,相信你们可以写出来。
运行结果:
本人C语言菜鸟一个,如有不对请多多包涵,本次只是想要分享一下学习心得,如有帮到你实属荣幸,谢谢观看。