算法二 数组模拟环形队列

一、先理解数组模型队列思路

 MaxSize:队列中总个数(数组的有多少个元素)

front:队列第一个元素的下标,初始值为-1

rear:队列最后一个元素的下标,初始值为-1

1.向队列中存入数据(addQueue)思路:

①先判断队列是否满

满的条件为:rear+1 = MaxSize(队列最后一个元素的下标加一等于数组中的元素总个数)

②再向数组中添加元素

③添加元素后,列表中最后一个数据已经改变,所以rear的值也要改变,rear变为rear+1

2.获取队列数据(getQueue)思路:

①先判断队列是否为空

空的条件为:real = front

②获取队列中的数据后,列表中第一个数据已经改变,所以front的值要改变,front变为front+1

代码实现:

package com.atguigu.queue;

import java.util.Scanner;

public class ArrayQueueDemo {

	public static void main(String[] args) {
		//测试一把
		//创建一个队列
		ArrayQueue queue = new ArrayQueue(3);
		char key = ' '; //接收用户输入
		Scanner scanner = new Scanner(System.in);//
		boolean loop = true;
		//输出一个菜单
		while(loop) {
			System.out.println("s(show): 显示队列");
			System.out.println("e(exit): 退出程序");
			System.out.println("a(add): 添加数据到队列");
			System.out.println("g(get): 从队列取出数据");
			System.out.println("h(head): 查看队列头的数据");
			key = scanner.next().charAt(0);//接收一个字符
			switch (key) {
			case 's':
				queue.showQueue();
				break;
			case 'a':
				System.out.println("输出一个数");
				int value = scanner.nextInt();
				queue.addQueue(value);
				break;
			case 'g': //取出数据
				try {
					int res = queue.getQueue();
					System.out.printf("取出的数据是%d\n", res);
				} catch (Exception e) {
					// TODO: handle exception
					System.out.println(e.getMessage());
				}
				break;
			case 'h': //查看队列头的数据
				try {
					int res = queue.headQueue();
					System.out.printf("队列头的数据是%d\n", res);
				} catch (Exception e) {
					// TODO: handle exception
					System.out.println(e.getMessage());
				}
				break;
			case 'e': //退出
				scanner.close();
				loop = false;
				break;
			default:
				break;
			}
		}
		
		System.out.println("程序退出~~");
	}

}
class ArrayQueue {
	private int maxSize; // 表示数组的最大容量
	private int front; // 队列头
	private int rear; // 队列尾
	private int[] arr; // 该数据用于存放数据, 模拟队列

	// 创建队列的构造器
	public ArrayQueue(int arrMaxSize) {
		maxSize = arrMaxSize;
		arr = new int[maxSize];
		front = -1; // 指向队列头部,分析出front是指向队列头的前一个位置.
		rear = -1; // 指向队列尾,指向队列尾的数据(即就是队列最后一个数据)
	}

	// 判断队列是否满
	public boolean isFull() {
		return rear == maxSize - 1;
	}

	// 判断队列是否为空
	public boolean isEmpty() {
		return rear == front;
	}

	// 添加数据到队列
	public void addQueue(int n) {
		// 判断队列是否满
		if (isFull()) {
			System.out.println("队列满,不能加入数据~");
			return;
		}
		rear++; // 让rear 后移
		arr[rear] = n;
	}

	// 获取队列的数据, 出队列
	public int getQueue() {
		// 判断队列是否空
		if (isEmpty()) {
			// 通过抛出异常
			throw new RuntimeException("队列空,不能取数据");
		}
		front++; // front后移
		return arr[front];

	}

	// 显示队列的所有数据
	public void showQueue() {
		// 遍历
		if (isEmpty()) {
			System.out.println("队列空的,没有数据~~");
			return;
		}
		for (int i = 0; i < arr.length; i++) {
			System.out.printf("arr[%d]=%d\n", i, arr[i]);
		}
	}

	// 显示队列的头数据, 注意不是取出数据
	public int headQueue() {
		// 判断
		if (isEmpty()) {
			throw new RuntimeException("队列空的,没有数据~~");
		}
		return arr[front + 1];
	}
}

问题:

获取队列中第一个数据时代码是arr[front+1],这种方式front只能一直增加,向队列中加入数据时,

rear的改变方式也是rear+1,若例一种情况:

数组到最大容量(银行业务员窗口满了),队列中第一个元素已经获取(第一个业务员窗口已经开

放),此时虽然窗口是开的,但不能再增加数据,缺点即是只能用一次,不能复用

二、数组模拟环形队列

此种环形方式目的是为了改进了上述问题

改进思想:

front:front指向队列的第一个元素即为第一个元素的下标(arr[front] 就是队列中的第一个元素)

rear:rear指向约定的列表中空的位置即为列表中最后一个元素的小标+1(arr[rear-1]就是队列中最后一个元素),有一个空位置是为了做一个约定

有几个式子要理解:

增加元素前:rear = 4

理解:

此时增加一个元素:

此时是为满的状态,当队列满时的条件:

(rear + 1) % maxSize = front

(4 + 1)% 5 = 0

 即判断队列是否满的代码:

这时如果第一个数据出队列,maxSize = 5,50加入之前的rear=4 ,加入之和rear = (4+1)% 5 = 0

得到 (rear + 1) % maxSize = rear

理解:

front = 0,rear = 5,(此时表示为没有空的位置,所有窗口都在使用中)(0+5)% 5 = 0

这种没有空的位置情况,当第一个数据拿出后,rear即为第一个窗口所在的位置,再添加时,

arr[rear]即为arr[0],rear = 1

  1.  添加数据到队列
    判断是否满,再加入 arr[rear] = n(rear就是要添加数据的位置),rear = (rear + 1) % maxSize
  2. 出队列
    判断是否为空,因为front的改变比较麻烦,先临时保存个变量后返回,找到这个值后改变front的值,front = (front + 1) % maxSize 和rear一个道理

 3.显示队列中所有元素

 总结:转换为环形队列总体上就是转变为取模%的思想,%可以让最后一个元素换到第一个元素中,具有了复用性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值