在有序序列中,中位数具有一些很优美的性质。
定义
中位数,又称中点数,中值。中位数是按顺序排列的一组数据中居于中间位置的数,即在这组数据中,有一半的数据比他大,有一半的数据比他小,这里用 来表示中位数。(注意:中位数和众数不同,众数指最多的数,众数有时不止一个,而中位数只能有一个。) 有一组数据: 将它按从小到大的顺序排序为:X1,X2,X3…Xn 则当N为奇数时 mid=X(n+1)/2;当N为偶数时 mid=(X(n/2)+x(n/2+1))/2 。 一个数集中最多有一半的数值小于中位数,也最多有一半的数值大于中位数。如果大于和小于中位数的数值个数均少于一半,那么数集中必有若干值等同于中位数。
平均数,中位数,众数区别联系
1)平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
2)中位数是通过排序得到的,它不受最大、最小两个极端数值的影响。部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
3)众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向。
优缺点: 平均数:需要全组所有数据来计算;易受数据中极端数值的影响。中位数:仅需把数据按顺序排列后即可确定;不易受数据中极端数值的影响。众数:通过计数得到;不易受数据中极端数值的影响。
典例
1.货仓选址 传送门
在一条数轴上有 N 家商店,它们的坐标分别为 A1∼AN。
现在需要在数轴上建立一家货仓,每天清晨,从货仓到每家商店都要运送一车商品。
为了提高效率,求把货仓建在何处,可以使得货仓到每家商店的距离之和最小。
输入格式
第一行输入整数 N。
第二行 N 个整数 A1∼AN。
输出格式
输出一个整数,表示距离之和的最小值。
数据范围
1≤N≤100000,
0≤Ai≤40000
输入样例:
4
6 2 9 1
输出样例:
12
思路:
排序后找中位数,就这么简单
设仓库位置为k
答案为 ans = min{ | X1 - k | + | X2 - k | + | X3 - k |+…+ | Xn - k | }
证明:
这道题目中,每一个点到中位数的距离,都是满足全局的最有性,而不是局部最优性。
设在仓库建在 X 轴坐标处,X 左侧的商店有 P 家 ,右侧的商店有 Q 家
若 P < Q ,则每把仓库的选址向右移动 1 单位距离,距离之和就会变小 Q - P。
同理,若 P > Q , 则仓库的选址向左移动 1 单位距离,距离之和就会变小。
当 P = Q
时为最优解。
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int a[N];
int main()
{
int n;
cin >> n;
for(int i = 0;i < n;i ++) cin >> a[i];
sort