t0_54coder
这个作者很懒,什么都没留下…
展开
-
数据挖掘:解锁数据价值的关键技术
数据挖掘(DM)是一个借助计算机的过程,旨在从大型数据集中寻找模式。它运用复杂的算法,将隐藏在数据中的模式揭示出来,以解决现实世界中的问题。虽然数据挖掘有多种类型,但通常可分为探索性和预测性两大类。探索性数据挖掘已经有超过50年的历史。在过去的一个世纪里,它在统计学中被广泛用于确定某些数据分析技术的适用性。例如,在保险行业,它可以作为检测欺诈性保险索赔的工具,像识别多次提交损坏货物重复照片的保险案件。再比如,它能发现抽样错误,如调查中90%的受访者是女性,而原本要求是50%。原创 2025-04-16 01:21:01 · 28 阅读 · 0 评论 -
神经网络架构搜索:多层感知机实现指南
多层感知机是最容易实现的深度学习架构之一。它由几个线性层堆叠而成,每个层接收上一层的输入,将其与自身的权重相乘,再加上一个偏置向量,然后通过一个激活函数得到该层的输出。这个前馈过程会一直持续,直到我们从最后一层得到分类或回归输出。最后,将这个最终输出与真实的分类或回归值进行比较,使用合适的损失函数计算损失,并通过梯度下降法逐个更新所有层的权重。原创 2025-04-16 01:18:08 · 48 阅读 · 0 评论 -
Python实现通用梯度下降算法优化单隐藏层神经网络
在人工智能领域,人工神经网络(ANN)的优化是一个核心问题,而梯度下降(GD)算法则是实现这一优化的重要手段。本文将深入探讨如何在Python中实现通用的梯度下降算法,以优化具有单隐藏层的人工神经网络的参数。原创 2025-04-16 01:14:53 · 31 阅读 · 0 评论 -
利用Captum库实现模型可解释性:基于CIFAR数据集的实践
我们使用CrossEntropyLoss()函数和随机梯度下降(SGD)优化器。通过本教程,我们展示了如何在一个简单的模型和CIFAR数据集的测试样本上应用Captum库中的模型可解释性算法。我们构建了一个基本模型,并使用积分梯度、显著性图、DeepLift和噪声隧道等归因算法将图像标签归因于输入像素,并进行了可视化。这些技术有助于我们更好地理解模型的决策过程,提高模型的可解释性。原创 2025-04-16 01:12:03 · 114 阅读 · 0 评论 -
深入解析SWAV:自监督学习的新视角
假设ztzt和zszs是同一图像经过不同随机增强变换t∼Tt \sim Tt∼T后得到的两个图像特征。这里的图像特征是对同一图像X\mathbf{X}X进行随机增强后生成的。而qtqt和qsqs则分别是这些图像视图对应的代码(codes),可以将其视为图像的软类别。再来看原型(prototypes),考虑一组位于单位球面上的KKK个原型c1⋯cKc1⋯cK。原创 2025-04-16 01:09:22 · 29 阅读 · 0 评论 -
Kubernetes:机器学习应用部署与管理的利器
在之前的文章中,我们了解到容器相较于虚拟机具有隔离性、可移植性、易于实验以及不同环境下的一致性等优势,而且更加轻量级。如果你已经决定使用容器和Docker,那么Kubernetes将是一个自然的选择。Kubernetes是一个容器编排系统,它能够自动化容器化应用的部署、扩展和管理。简单来说,它可以帮助我们使用声明式配置(配置文件)来处理多个相同或不同应用的容器。原创 2025-04-16 01:06:25 · 20 阅读 · 0 评论 -
生成对抗网络(GAN)在计算机视觉中的高级训练概念
本文介绍了一些即使在今天仍在使用的最先进的训练概念,这些概念有助于解决模式崩溃、大规模数据集和百万像素分辨率等问题。未来,我们期待GAN在计算机视觉领域取得更多的进步。在后续的文章中,我们将看到从2018年开始GAN在计算机视觉方面的惊人进展。原创 2025-04-16 01:00:40 · 29 阅读 · 0 评论 -
深入探索TensorFlow与Keras的世界
TensorFlow是用于开发神经网络的深度学习框架,但它实际上是一种低级语言,实现的整体复杂度较高,尤其是对于初学者来说。而Keras深度学习库为构建神经网络提供了更高级的方法。正如其官方网站所描述的,Keras是为人类设计的API,而非为机器。这意味着使用这个模块可以让人类更轻松地进行编码操作。使用Keras这样的深度学习库的最大好处是,工作显著减少。因为可以在几分钟内构建复杂的架构,模块会处理实际的过程,我们只需专注于整体架构设计,而不是复杂的细节。此外,Keras还有大量有用的文档可供入门。原创 2025-04-16 00:58:12 · 207 阅读 · 0 评论 -
探索MeiliSearch:Rust在开源搜索引擎中的应用与挑战
在当今的科技领域,开源项目如同璀璨的星辰,照亮了技术发展的道路。MeiliSearch作为一款开源搜索引擎,在GitHub上是最受关注的Rust项目之一。近日,我们与MeiliSearch的联合创始人兼首席运营官Thomas Payet进行了一次深入的交流,探讨了MeiliSearch的发展、Rust语言在其中的应用以及他们在开发过程中的经验与挑战。原创 2025-04-16 00:54:53 · 38 阅读 · 0 评论 -
深入探索基于策略的强化学习算法
在强化学习领域,有多种算法可以帮助智能体在环境中学习并做出最优决策。本次,我们将聚焦于基于策略的强化学习算法家族。原创 2025-04-16 00:52:31 · 43 阅读 · 0 评论 -
深入了解去噪扩散概率模型(DDPM):原理、实现与应用
总的来说,DDPM是一种强大的生成模型,在生成新图像方面可以提供出色的结果。该模型通过先向原始图像添加噪声,然后消除噪声,生成一个与原始图像相似但噪声更少的新图像。通过训练,模型可以对前向扩散过程中每一步的噪声水平进行最大似然估计。由于DDPM能够成功生成高质量的图像,且无需进行对抗训练,因此在许多领域得到了应用。原创 2025-04-16 00:49:50 · 122 阅读 · 0 评论 -
探索SAM 2:图像与视频分割的新突破
SAM 2在SAM的基础上实现了从图像到视频的能力扩展,通过其独特的架构和先进的处理方式,在图像和视频分割领域展现出了卓越的性能和广泛的应用前景。无论是创意视频制作、计算机视觉系统开发还是其他相关领域,SAM 2都有望成为推动技术发展的重要力量,为我们带来更多的创新和便利。原创 2025-04-16 00:45:00 · 47 阅读 · 0 评论 -
可解释人工智能(XAI):解锁深度学习黑盒的钥匙
近年来,深度学习应用在众多领域取得了令人瞩目的成就,比如在图像和语音识别、推荐系统等任务中甚至超越了人类的表现。然而,这些应用却存在着可解释性和可靠性不足的问题。深度学习模型通常被视为难以理解的黑盒,其底层机制复杂,无法对自身的决策和预测给出合理的解释,这使得人类难以信任它们。而且,人工智能算法还可能出现错误,在某些应用场景中,这些错误甚至可能是致命的。例如,自动驾驶汽车的计算机视觉系统出现错误可能导致车祸,而在医疗领域,错误的决策可能危及患者的生命。原创 2025-04-16 00:42:24 · 37 阅读 · 0 评论 -
Apache Airflow:数据管道编排的理想之选
Apache Airflow是一个用于创作、调度和监控管道的工具,是ETL和MLOps用例的理想解决方案。其常见用例包括从多个源提取数据、聚合和转换数据并存储到数据仓库;从数据中提取见解并在分析仪表板中展示;训练、验证和部署机器学习模型等。Apache Airflow是一款出色的数据工程工具,虽然存在一些缺点,但具有很高的灵活性和可扩展性。如果你想深入了解,可以进一步探索相关资源。希望通过本文,你对Apache Airflow有了更全面的认识,能够在实际项目中更好地运用它来编排数据管道。原创 2025-04-16 00:39:39 · 35 阅读 · 0 评论 -
无监督学习与自动编码器:解锁AI新可能
在人工智能和机器学习领域,数据标注一直是一项耗时费力的工作。想象一下,如果我们在训练模型时不需要大量标注好的数据,那将会是多么酷的事情!然而,从支持向量机到卷积神经网络,大多数现有模型在没有标注数据的情况下根本无法进行训练。不过,有一小部分算法却能做到这一点,这就是无监督学习。原创 2025-04-15 00:58:18 · 21 阅读 · 0 评论 -
游戏设计、开发与Carp语言的探索
在本期的《功能未来》节目中,我们有幸邀请到了游戏设计师Erik Svedäng。他创作了众多桌游和电子游戏,其中包括带有自创编程语言的解谜电子游戏Else Heart.Break(),同时他也是用于实时应用的静态类型Lisp语言Carp的创造者。原创 2025-04-15 00:56:09 · 36 阅读 · 0 评论 -
深入探究卷积自编码器:原理、实现与应用
在人工智能和深度学习的领域中,卷积神经网络(Convolutional Neural Networks,简称 CNN)已经成为处理二维空间结构数据(如图像)的强大工具。CNN 能够将输入的图像逐步处理,最终生成一维向量表示。这就引发了一个有趣的思考:既然可以从图像矩阵学习到向量表示的映射,那么是否也能从这个向量表示反向学习到图像呢?这正是卷积自编码器(Convolutional Autoencoder)要解决的问题。要理解本文的内容,需要对 Python 代码和神经网络有基本的了解,适合有开发新颖架构经验的原创 2025-04-15 00:53:44 · 77 阅读 · 0 评论 -
迁移Mask_RCNN项目以支持TensorFlow 2.0
为了让Mask R - CNN模型在TensorFlow 2.0中进行预测和训练,我们总共对项目进行了9处修改。其中,4处修改用于支持预测功能,5处修改用于支持训练功能。通过这些修改,我们可以充分利用TensorFlow 2.0的新特性,让Mask R - CNN模型在新环境下继续发挥作用。总之,随着深度学习框架的不断发展,我们需要不断地对现有项目进行迁移和适配,以跟上技术的步伐,充分发挥新技术的优势。希望本文的内容能帮助大家顺利将Mask_RCNN项目迁移到TensorFlow 2.0环境中。原创 2025-04-15 00:51:13 · 31 阅读 · 0 评论 -
探索新一代图像合成模型 FLUX:功能、优势与实践
在人工智能的快速发展进程中,深度学习图像生成技术吸引了众多目光。图像生成工具不仅有趣且易于使用,更是大众触手可及的广泛民主化和分布式人工智能模型之一,其社会影响力仅次于大语言模型。在过去两年里,Stable Diffusion 作为首个公开分发且可用的图像合成模型,一直占据着主导地位。然而,随着 Black Forest Labs 发布 FLUX,这一格局发生了改变。原创 2025-04-15 00:49:06 · 48 阅读 · 0 评论 -
深度学习算法全面解析:从基础到应用
根据维基百科的定义,“深度学习(也称为深度结构化学习或差分编程)是基于具有表示学习的人工神经网络的更广泛机器学习方法家族的一部分。学习可以是有监督、半监督或无监督的”。简单来说,深度学习是受人类大脑处理数据和创建模式以用于决策的工作方式启发的一系列算法,它在人工神经网络这一单一模型架构的基础上不断扩展和改进。以上就是目前所有重要的深度学习算法。当然,由于已经发表的架构数量众多,无法全部涵盖,但大多数都是基于这些基本模型,并通过不同的技术和技巧进行改进。原创 2025-04-14 00:49:47 · 50 阅读 · 0 评论 -
使用PyTorch实现CIFAR - 10图像分类
通过这个教程,我们详细介绍了如何使用PyTorch构建一个基本的图像分类器。我们涵盖了神经网络的构建、数据加载、学习率调度等重要内容。这只是一个开始,在本系列的后续部分,我们将探讨PyTorch的一些高级功能,如创建更复杂的架构、为不同参数设置不同的学习率等。原创 2025-04-14 00:47:03 · 32 阅读 · 0 评论 -
使用深度学习进行股票价格预测的实践
在开始具体的实践之前,先让我们了解一下本文的内容结构。文章主要分为以下几个部分:引言、数据准备、数据可视化、数据预处理与进一步可视化、数据分析、构建深度学习模型、模型预测以及结论。原创 2025-04-14 00:44:23 · 104 阅读 · 0 评论 -
深入解析梯度提升算法:原理、实现与优劣分析
集成学习是通过组合多个“弱”模型来构建一个“强”模型。梯度提升属于提升方法的范畴,它通过迭代地从每个弱学习器中学习,逐步构建一个强大的模型。梯度提升可应用于回归、分类和排序等任务,本文将重点聚焦于分类问题。提升方法的核心思想源于对弱学习器进行改进以使其变得更好的直觉。Adaboost 是首个提升算法,由 Leo Breiman 在 1997 年将其置于统计框架之下,为后续 Jerome H. Friedman 等人将其改进为用于回归的梯度提升算法奠定了基础。原创 2025-04-14 00:42:08 · 140 阅读 · 0 评论 -
模态逻辑的应用领域:拓扑学、数学基础与计算机科学
拓扑学是数学的一个分支,主要研究诸如平面、曲面等几何对象及其连续变形。例如,我们可以把一块正方体形状的橡皮泥连续变形为球体,这个过程就体现了连续变形的概念。拓扑学研究的是直到同胚的几何结构,同胚是一种一一对应的连续变换。原创 2025-04-14 00:39:09 · 269 阅读 · 0 评论 -
探索图神经网络:原理、实现与挑战
在当今的机器学习领域,图神经网络(Graph Neural Networks,简称 GNNs)正逐渐崭露头角。它是一种专门设计用于处理图格式信息的神经网络,凭借处理复杂数据结构的能力,在众多领域得到应用,近年来也越来越受到关注。原创 2025-04-14 00:35:04 · 157 阅读 · 0 评论 -
机器学习的未来:从监督学习到无监督学习
而在强化学习中,反馈是一种奖励,只是对所做的事情进行评估,这是两者的根本区别。为了完成这个任务,机器必须开发出对数据的某种表示,理解哪些物体是有生命的,哪些是无生命的,无生命物体有可预测的轨迹,有生命物体则不然。他希望从长远来看,他们的工作能成为迈向未来的一块垫脚石,届时会有许多联网的机器人在现实世界中,当它们没有更重要的任务时,就会与周围环境互动并学习。总之,机器学习正从以监督学习为主的模式向无监督学习领域拓展,不同类型的无监督学习方法各有特点和优势,它们共同为实现机器的人类级智能带来了希望和可能。原创 2025-04-14 00:32:32 · 36 阅读 · 0 评论 -
探索几何深度学习:超越欧几里得数据的新兴领域
2017 年,Bronstein 等人在他们的文章“Geometric deep learning: going beyond euclidean data”中首次引入了几何深度学习(GDL)这一术语。GDL 定义了一个新兴的研究领域,它将深度学习应用于非欧几里得数据。非欧几里得数据是指两点之间的最短有效路径不是它们之间的欧几里得距离的数据。以计算机图形学中广泛使用的网格或图特化为例,经典的斯坦福兔子可以用网格(非欧几里得)或类似网格的体积(欧几里得)表示。原创 2025-04-14 00:30:10 · 124 阅读 · 0 评论 -
深入了解深度卷积生成对抗网络(DCGANs)及其数字生成应用
尽管如今GANs的热度达到顶峰并取得了巨大成功,但起初人们对这一概念的态度并非如此积极。GANs的优点在于不需要启发式成本函数(例如逐像素独立均方损失),并且是生成模型中较好的方法之一。然而,它也存在一些问题,如计算需求高、缺乏创新思路,且生成的结果大多无意义。因此,卷积神经网络(CNNs)主要用于构建与监督学习相关的任务,如分类问题,因为这些问题借助CNN能够轻松解决。在现代,CNN的应用不再局限于监督分类问题。随着DCGANs的引入,人们发现CNN在众多任务中产生高质量结果的潜力越来越大。原创 2025-04-14 00:27:28 · 391 阅读 · 0 评论 -
评估目标检测模型:深入解析平均精度均值(mAP)
在目标检测领域,评估模型的性能是至关重要的。像R - CNN和YOLO这样的目标检测模型,通常使用平均精度均值(mAP)来进行评估。mAP通过比较真实边界框和检测到的边界框,给出一个分数,分数越高,说明模型的检测越准确。原创 2025-04-14 00:23:47 · 54 阅读 · 0 评论 -
构建短句子表情符号推荐系统:从原理到实践
在当今的交流中,表情符号已经成为不可或缺的一部分。与以往不同,如今无论何种对话,人们都习惯用表情符号以文本形式表达情感。多年来,表情符号的使用和表达方式不断演变,并且广受欢迎。它甚至可以作为一种独立的非语言交流方式,传达大部分情感,还能提升书面文本的情感表达力。现在手机的内置键盘也更新了功能,能在用户输入单词或短语时推荐相关表情符号,让用户无需在海量表情符号中苦苦寻找,就能轻松表达情感。最新研究显示,表情符号的吸引力远远超出了年轻用户群体。原创 2025-04-14 00:20:45 · 32 阅读 · 0 评论 -
探索Haskell基金会:推动Haskell语言主流应用的力量
在当今丰富多彩的编程语言世界里,Haskell以其独特的函数式编程特性吸引着众多开发者的目光。而Haskell基金会,作为推动Haskell语言主流应用的重要力量,正积极发挥着关键作用。本文通过对Haskell基金会执行董事Andrew Boardman的访谈,深入了解该基金会的目标、计划以及面临的挑战。原创 2025-04-14 00:18:24 · 28 阅读 · 0 评论 -
深度学习模型单元测试的重要性与实践
单元测试是我们开发复杂深度学习模型时的宝贵工具。尽管编写好的测试可能很困难且耗时,但绝对不能忽视。不过,我们也需要找到平衡点,避免过度测试。单元测试只是使代码适合生产环境的一种方法,为确保原始笔记本能在部署环境中可靠使用,还需要做更多的工作,如添加日志记录和学习调试TensorFlow代码等。原创 2025-04-14 00:16:17 · 41 阅读 · 0 评论 -
JAX、TensorFlow和PyTorch实现变分自编码器的对比
在深度学习领域,有许多强大的框架可供选择,如JAX、TensorFlow和PyTorch。很多人都好奇JAX与TensorFlow、PyTorch相比究竟如何。为了找出答案,我们可以通过用这三个框架从零开始构建相同的模型来进行比较。本文将同时使用JAX、TensorFlow和PyTorch开发一个变分自编码器(Variational Autoencoder,VAE),并逐行展示各组件的代码,以找出它们之间的差异、相似之处、弱点和优势。原创 2025-04-14 00:13:47 · 153 阅读 · 0 评论 -
图像语义分割:深度学习助力精准像素分类
在计算机视觉领域,图像分割与目标识别、检测一样,都是基础任务。其中,语义分割的目标是将图像中的每个像素分类到特定的类别中。它与图像分类不同,图像分类是将整个图像归为一个类别,而语义分割则是对每个单独的像素进行分类。我们有一组预定义的类别,并根据图像中不同对象的上下文信息,为图像的每个像素分配一个标签。以一张实际图像为例,图像中的每个像素都被分配了特定的标签,并以不同的颜色表示,比如红色代表人物,蓝色代表汽车,绿色代表树木等。原创 2025-04-14 00:10:25 · 39 阅读 · 0 评论 -
利用预训练BERT进行文本摘要:高效且先进的解决方案
文本摘要主要分为提取式摘要和抽象式摘要。提取式摘要通常被定义为一个二分类任务,通过标签指示文本片段(通常是句子)是否应包含在摘要中。而抽象式摘要则需要语言生成能力,以创建包含源文本中未出现的新单词和短语的摘要。与之前的NLP任务不同,摘要任务需要对自然语言有更全面的理解,不仅要理解单个单词和短语的含义,还要在减少原文长度的同时保留其大部分原始意义。由于BERT的输出向量是基于标记而不是句子,并且其分段嵌入只有两个标签(句子A或句子B),无法直接用于提取式摘要。原创 2025-04-13 01:02:30 · 62 阅读 · 0 评论 -
Rust枚举类型的使用与实践
枚举,全称为“enumerations”,是Rust中创建复合数据类型的一种方式。它允许我们列举一个类型的多种可能变体。例如,我们可以使用枚举来重新创建一个具有True和False两个变体的BoolTrue,False,枚举的变体可以像结构体一样包含字段,这些字段可以是未命名的,也可以是命名的。例如下面的HealthBar枚举,AliveAlive(i8),Dead,如果我们想表示这个字段代表生命值,也可以使用命名的lifeDead,原创 2025-04-13 01:00:12 · 26 阅读 · 0 评论 -
探索通用人工智能:现状、挑战与未来
通用人工智能(AGI)是指能力等同于或超越人类的AI。它具备跨不同领域学习、理解和应用知识的能力。AGI也被称为强AI、全AI、人类水平AI或通用智能行动。不过,一些学者专门用“强AI”来指代具有感知或意识的计算机程序。虽然目前AGI仍停留在理论阶段,但有朝一日它或许能复制人类的认知能力,如推理、解决问题、感知、学习和语言理解。然而,我们目前还未达到这一阶段。原创 2025-04-13 00:57:29 · 70 阅读 · 0 评论 -
深入了解全景分割:计算机视觉的新前沿
在计算机视觉领域,对场景理解的追求催生了众多分割任务。全景分割作为一种全新的方法,将语义分割和实例分割整合到一个框架中,为我们提供了更深入理解图像场景的途径。本文将详细探讨全景分割的细节、应用及面临的挑战。原创 2025-04-13 00:54:21 · 41 阅读 · 0 评论 -
探索视觉Transformer:架构、应用与优化策略
ViTs是一种特殊的神经网络,主要应用于图像分类和目标检测任务。其准确性已经超越了传统的CNN,这主要得益于它基于Transformer架构。Transformer神经网络架构由Vaswani等人在2017年的论文《Attention is all you need》中提出。它采用了与循环神经网络(RNN)类似的编码器 - 解码器结构,但输入没有时间戳的概念,所有单词同时输入,并且它们的词嵌入是同时确定的。输入嵌入(Input-Embeddings):这是将输入传递给Transformer的第一步。原创 2025-04-13 00:51:41 · 46 阅读 · 0 评论 -
深度强化学习入门:从环境到模型学习的全面解析
在当今的深度学习领域中,深度强化学习(Deep Reinforcement Learning)是发展最为迅速的子学科之一。在不到十年的时间里,研究人员利用深度强化学习训练出的智能体,在从围棋等棋类游戏到雅达利游戏、《Dota》等电子游戏的各种游戏中,都击败了专业人类玩家。然而,即使是那些曾经涉足过深度学习其他子领域(如计算机视觉和自然语言处理)的人,强化学习的学习门槛也可能令人望而生畏。原创 2025-04-13 00:45:42 · 29 阅读 · 0 评论