Python:利用邻接矩阵判断有向图的连通性

Python求解:利用邻接矩阵判断有向图的连通性


 WoW,让我们先来看看我们要解决的小问题:

            —— 将任意一个有向图G采用矩阵输入,图形化输出图G,利用可达矩阵判定图G是否连通:

 

        (PS:判断图的连通性至少可以有[1].并查集  [2].DFS  [3].BFS 三种方法,关于其他求解方法,详见:https://blog.csdn.net/weixin_44646116/article/details/95523884

           当然,今天我们主要从数学角度探讨如何利用邻接矩阵来判断图的连通性:


    首先,我们需要一点数理知识:

          (一)邻接矩阵(Adjacency Matrix)是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中V={v1,v2,…,vn} 

                       V和E集合,其中,V是顶点,E是边。因此,用一个一维数组存放图中所有顶点数据;

                       一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接矩阵。邻接矩阵又分为有向图邻接矩阵和无向图邻接矩阵;

                      在图的邻接矩阵表示法中:

                     ① 用邻接矩阵表示顶点间的相邻关系

                     ② 用一个顺序表来存储顶点信息

      给出一个 具体的邻接矩阵(无边权值):

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呆头鹅_Daitoue

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值