- 博客(4)
- 收藏
- 关注
原创 pytorch学习——数据统计
a.norm(2,dim=1):对a的第二个维度做2范数,取哪个维度的范数哪个维度就会消掉。torch.where(一个判断条件,a,b)对应位置条件为真对应位置取a的数,否则取b的数。a.max(dim=1,keepdim=true),返回值与a的zim相同,不会被降低维度。a.kthvalue(8,dim=1)返回a第二个维度中第8个小的数,以及他的位置。a.topk(3,dim=1)返回a第二个维度中最大的3个数,以及他们的位置。
2023-10-30 11:54:02 60
原创 pytorch学习——基本运算
当多维进行矩阵乘法时,默认最后两个维度相乘,其余维度不变,符合broadcast机制。a.clamp(0,10)a中小于0的元素变为0,大于10的元素变为10。a.frac()裁剪为小数部分3.14裁剪为0.14。a.trunc()裁剪为整数部分3.14裁剪为3。a.clamp(10)a中小于10的元素变为10。a.pow(2):对a中所有元素进行平方运算。a.floor()向下近似3.14=3。a.ceil()向上近似3.14=4。a.round()四舍五入。
2023-10-28 19:57:35 56
原创 合并与分割
torch.cat([a,b],dim=0),两个参数,[a,b]表示:对ab两个张量进行合并,dim=0表示对ab张量第1个维度进行合并。若a.shape=(4,32,8),b.shape=(5,32,8),则torch.cat([a,b],dim=0).shape=(9,32,8)。参数[2,1]表示将c的某一维度按照长度2和1切分为两部分,dim=0表示切分第一维度。x,y=c.chunk(2,dim=0),参数2表示某一维度切分为2个部分。参数2表示c的某一维度按照长度2切分。
2023-10-28 18:51:21 54
原创 pytorch——维度变换
使用方法:a=tensor.rand(1,3,1,1)则a.repeat(4,32,1,1)表示:第一维的张量数据复制四次,第二维张量数据复制32次,第三维张量数据复制1次,第四维一次,此时a.size=torch.size([4,32*4,1,1])使用方法:a=tensor.rand(1,3,1,1) 则a.expand(4,3,28,28)就将第1,3,4个维度的张量的长度分别由1改变为4,28,28;,3,1,1)即(3,1,1);,1,1)由于长度不是1,则结果为(1,3,1,1)
2023-10-28 15:48:07 286 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人