pytorch——维度变换

squeeze降低维度

只能挤压掉长度为1的维度,对于不为1的维度保持不变

使用方法:a.squeeze(x)  其中参数x范围[-dim,dim-1],这里只举参数为0/正的例子

a=tensor.rand(1,3,1,1)则

a.squeeze(0)可以理解为(1,3,1,1)即(3,1,1);a.squeeze(3)可以理解为(1,3, 1 1,)即(1,3,1);注意a.squeeze(1)即(1,3,1,1)由于长度不是1,则结果为(1,3,1,1)

expand增加长度

只能增加长度为1的维度

使用方法:a=tensor.rand(1,3,1,1) 则a.expand(4,3,28,28)就将第1,3,4个维度的张量的长度分别由1改变为4,28,28;若a.expand(-1,-1,28,-1)则表示第3个维度长度变为28,其余不变

repeat通过复制原有数据增加长度

使用方法:a=tensor.rand(1,3,1,1)则a.repeat(4,32,1,1)表示:第一维的张量数据复制四次,第二维张量数据复制32次,第三维张量数据复制1次,第四维一次,此时a.size=torch.size([4,32*4,1,1])

a.t():a矩阵转置
transpose:维度交换

使用方法:a.transpose(1,3):表示张量a第二维度和第四维度交换,[abcd变为][adbc]

a.transpose(1,3).contigous():让张量连续?

permute:维度交换

a.permute(0,2,3,1):对a的各个维度按照给定顺序进行重新排队即:[abcd]变为[acdb]

broadcast增加维度并扩充长度

应用场景举例,有张量X=【A,B,C,D】x.shape=[4,3,28,28],想给张量x中的某些维度单独加一个数,则需要一个张量Y,Y可以为任意维度,broadcast会将Y扩展为与x维度以及某一维度的长度相同的张量,即xy的shape相同

适用范围:y中需要与x某一维度相加的那个维度的长度为1,或者与x相同

从最小维度开始匹配

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值