squeeze降低维度
只能挤压掉长度为1的维度,对于不为1的维度保持不变
使用方法:a.squeeze(x) 其中参数x范围[-dim,dim-1],这里只举参数为0/正的例子
a=tensor.rand(1,3,1,1)则
a.squeeze(0)可以理解为(1,3,1,1)即(3,1,1);a.squeeze(3)可以理解为(1,3, 1 1,)即(1,3,1);注意a.squeeze(1)即(1,3,1,1)由于长度不是1,则结果为(1,3,1,1)
expand增加长度
只能增加长度为1的维度
使用方法:a=tensor.rand(1,3,1,1) 则a.expand(4,3,28,28)就将第1,3,4个维度的张量的长度分别由1改变为4,28,28;若a.expand(-1,-1,28,-1)则表示第3个维度长度变为28,其余不变
repeat通过复制原有数据增加长度
使用方法:a=tensor.rand(1,3,1,1)则a.repeat(4,32,1,1)表示:第一维的张量数据复制四次,第二维张量数据复制32次,第三维张量数据复制1次,第四维一次,此时a.size=torch.size([4,32*4,1,1])
a.t():a矩阵转置
transpose:维度交换
使用方法:a.transpose(1,3):表示张量a第二维度和第四维度交换,[abcd变为][adbc]
a.transpose(1,3).contigous():让张量连续?
permute:维度交换
a.permute(0,2,3,1):对a的各个维度按照给定顺序进行重新排队即:[abcd]变为[acdb]
broadcast增加维度并扩充长度
应用场景举例,有张量X=【A,B,C,D】x.shape=[4,3,28,28],想给张量x中的某些维度单独加一个数,则需要一个张量Y,Y可以为任意维度,broadcast会将Y扩展为与x维度以及某一维度的长度相同的张量,即xy的shape相同
适用范围:y中需要与x某一维度相加的那个维度的长度为1,或者与x相同
从最小维度开始匹配