股票-诡道之术!

本周五,汽车与白酒继续轮涨,这就是机构资金抱团驱动板块走趋势的力量!

一个板块的上涨,走趋势与技术反弹是有很大区别的。

板块上涨要特别关注与120线的偏离度,如果偏离较大,就需要波段交易!

本周末聊一下股票投机的问题。

华尔街最古老的格言之一:在谣言中买进,在消息中卖出!

这一句道出了股票交易的真谛之一!

好好体会这句话吧!

是不是懂市场?从你对这句话理解可以看出来。

股票交易在根本上只有两种形式:一是价值投资,二是市场投机。

一个用正,一个用奇。

而价值投资是资本市场的魂!

但是,玩价值投资的难度非常非常的大!

据统计,在世界500强中,最后能持续活下来成为伟大企业的公司只有3%。

这充分说明,在A股市场中,真正具有伟大价值投资意义的公司少之又少。

换句说话,就是A股市场95%以上企业都不在真正具有价值投资的范围内,都只具有投机的属性!

即,日常的股票交易,诡道之术占了多数!

对于一个普通人而言,根本不可能知道一个公司真正的前景。

所以,普通散户炒股票一定要明白这个道理,一定要学会投机。

价值投机,也是一种投机。

要学会投机。

你就需要把你的思维,从研究“股票本身”转移到对引起“股票波动的行为”和”交易者”的研究上来。

即研究:是什么引起了股票价格的短期波动?

那么市场行为与人性是重点!

所以,市场行为与交易者就成为投机技术研究的重中之重(当然还有市场周期等宏观问题)。

不少朋友不明白,为什么一个投机的市场中,故事会非常重要,故事为什么比业绩重要?

因为故事是投机炒作的天然的需要!

故事是人性贪婪与恐惧中最好利用的工具。

人性充满也幻想,而故事是最好的诱惑。

人性天然喜欢美好故事,讨厌过于理性的东西!

在前几天的文章中,我提了几个问题要大家思考。

一个企业的价值和业绩,每天,每周能有多大变化呢?

这个变化是很小的,有的甚至1年都没有多大的变化!

但是,为什么这个企业的股价每天都如天气一样的变呢!

一家企业,预期年内的收益会实现10亿元!最终盈利了8亿元,结果股价大跌30%。为什么啊!盈利了8亿元,股价还暴跌!

不就是比预期差一点吗?

2000年白宫新闻发布会上,某基因公司科学家宣布:这是一个人类历史性的时刻,该公司破解了人类基因的密码!

该公司股票在这消息后的反应是:

第一天大跌10%,第二天继续大跌。

为什么? 一家上市公司发现了一个科学上的奇迹,结果股价反而崩了!

这些问题就是希望大家把市场交易的问题搞明白。

把市场交易的事情搞明白了。

我们再清楚散户的优势与劣势是什么?

散户最大的优势是什么,是灵活!

最大的劣势是信息不畅,不具备对企业专业的研究能力!

要让我们自己像机构一样深入去研究企业是没有优势的。

你和大众同样的思维,做同样的事是不会成功的!

但是,我们可以利用灵活的优势,学会借势!

在大资金搭好桥后,借桥而上。

所以,学习技术的目的之一是什么?

就是要学会发现这样的桥去借势!

这也是我反复讲,要学会跟随主流主资金的原因!

所以,如果你不明白股票是诡道之一!

你是传统的价值派。

你很难真正理解市场。

价值投资是正道没有错!

但是,市场很复杂。

一个普通社会的一个小角落,一个单位的内部在利益面前都很复杂,何况是利益更赤裸裸的资本市场!

所以,单纯一个价值投资概括不了市场的全部。

大家好好理解吧!

一位技术大师说过,技术分析是心理学,而非数学上的行为。

走势图的解读是艺术,而不是科学!

所以,对市场行为与情绪的理解在炒股中至关重要。

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机学习有一定了解的研究人员和技爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
粒子群优化(PSO)是一种基于群体智能的优化算法,由James Kennedy和Russell Eberhart于1995年提出,灵感来源于鸟群或鱼群的群体行为 。它通过模拟群体间的协作与竞争,利用个体和群体的经验来迭代求解问题 。PSO常用于优化支持向量机(SVM)的参数,以提升模型性能 。SVM是一种强大的监督学习模型,通过寻找最优超平面实现分类或回归 ,其性能依赖于参数C(惩罚因子)和γ(核函数参数) 。 PSO优化SVM参数的过程如下:首先随机生成一组粒子,每个粒子代表一组SVM参数(C和γ) 。接着,使用这些参数训练SVM模型,并通过测试集评估性能(如准确率或F1分数),作为粒子的适应度值 。然后,根据个体和全局最优解的位置更新粒子的速度和位置 ,速度决定移动方向和速度,位置表示参数组合 。粒子群共享全局最优解信息,推动所有粒子向最优解移动 。重复上述步骤,直至达到预设迭代次数或满足停止条件 。 在实际应用中,PSO-SVM的实现通常包括以下部分:数据预处理(导入、清洗、标准化等) ;PSO算法实现(定义粒子结构、初始化种群、设定优化目标和边界条件) ;SVM模型训练(使用不同参数组合) ;适应度计算(评估模型性能) ;更新规则(根据PSO算法更新速度和位置) ;主循环(多轮迭代,记录全局最优解) ;结果分析(展示最佳参数组合,进行最终预测) 。 PSO优化SVM参数的过程自动高效,可提高模型泛化能力和预测准确性 。对于初学者,这是一个很好的实践案例,有助于理解优化算法在机学习中的应用 ;对于有经验的开发者,可作为进一步研究和改进的基础,例如探索PSO变体或结合其他优化方法 。
在移动开发领域,Android Studio 是谷歌推出的官方集成开发环境(IDE),专门用于开发 Android 应用。本项目旨在通过 Android Studio 创建一个模仿流行生活分享平台小红书的简单应用。小红书以其强大的社交功能和丰富的用户生成内容而闻名,融合了购物、博客和社交媒体的特点。通过复刻小红书,开发者可以学习构建类似的混合型应用。 1. Android Studio 核心知识点 界面设计:利用 Android Studio 的布局编辑(可通过 XML 编码或拖放操作)来构建用户界面,涵盖 TextView、ImageView、RecyclerView 等多种组件。 主题与样式:掌握 Material Design 的应用,自定义主题和样式,以实现类似小红书的视觉效果。 Activity 与 Fragment:理解 Activity 和 Fragment 的生命周期,以及它们在多屏幕适配中的作用。 Intent:通过 Intent 实现页面跳转和数据传递。 2. 小红书 App 特性实现 登录注册:实现用户登录和注册功能,可能涉及 OAuth 或自定义认证机制。 数据获取与展示:使用网络请求库(如 Retrofit 或 OkHttp)从服务获取数据,并通过 RecyclerView 展示,可能采用瀑布流布局。 图片加载:借助图片加载库(如 Glide 或 Picasso)优化图片加载速度和性能。 社交功能:实现评论、点赞、分享等社交功能,涉及数据库操作和网络通信。 动态通知:集成 Firebase Cloud Messaging(FCM)实现即时消息推送。 3. Android SDK 与相关库 Android SDK:熟悉不同版本的 Android API,确保应用的兼容性。 Room Persistence Library:用于本地数据库存储,缓存
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值