Leetcode no.121 买卖股票的最佳时机(dp)

给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。

你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。

返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。

示例 1:

输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
     注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
 

提示:

1 <= prices.length <= 105
0 <= prices[i] <= 104

class Solution {

public:

    int maxProfit(vector<int>& prices) {

        int maxprofit = 0;

        int minprice = 1e9;

        for (int price : prices) {

            maxprofit = max(maxprofit, price - minprice);

            minprice = min(price, minprice);

        }

        return maxprofit;

    }

};

思路:题目只问最大利润,没有问这几天具体哪一天买、哪一天卖,因此可以考虑使用 动态规划 的方法来解决。

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int res = 0; 
        int pre = 0;//前一天卖出可得的最大利润
        for (int i = 1; i < prices.size(); ++i){
            int diff = prices[i] - prices[i-1];//利润差
            pre = max(diff + pre, 0);//第i天我能获得的利润为前一天的利润加上今天的利润差,
                                     //如果小于0,证明今天卖出会亏钱,所以不卖,保留前一天的利润。
            res = max(res, pre);     //用今天的利润和昨天的利润比较,昨天大则不卖,即保留昨天的利润。
        }
        return res;
    }
};

知识点:

多阶段决策问题:动态规划常常用于求解多阶段决策问题;
无后效性:每一天是否持股设计成状态变量的一维。状态设置具体,推导状态转移方程方便。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值