给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。
你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。
返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回 0 。
示例 1:
输入:[7,1,5,3,6,4]
输出:5
解释:在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格;同时,你不能在买入前卖出股票。
示例 2:
输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 没有交易完成, 所以最大利润为 0。
提示:
1 <= prices.length <= 105
0 <= prices[i] <= 104
class Solution {
public:
int maxProfit(vector<int>& prices) {
int maxprofit = 0;
int minprice = 1e9;
for (int price : prices) {
maxprofit = max(maxprofit, price - minprice);
minprice = min(price, minprice);
}
return maxprofit;
}
};
思路:题目只问最大利润,没有问这几天具体哪一天买、哪一天卖,因此可以考虑使用 动态规划 的方法来解决。
class Solution {
public:
int maxProfit(vector<int>& prices) {
int res = 0;
int pre = 0;//前一天卖出可得的最大利润
for (int i = 1; i < prices.size(); ++i){
int diff = prices[i] - prices[i-1];//利润差
pre = max(diff + pre, 0);//第i天我能获得的利润为前一天的利润加上今天的利润差,
//如果小于0,证明今天卖出会亏钱,所以不卖,保留前一天的利润。
res = max(res, pre); //用今天的利润和昨天的利润比较,昨天大则不卖,即保留昨天的利润。
}
return res;
}
};
知识点:
多阶段决策问题:动态规划常常用于求解多阶段决策问题;
无后效性:每一天是否持股设计成状态变量的一维。状态设置具体,推导状态转移方程方便。