DH 密钥交换原理
假设 q 为素数,对于正整数 a,x,y,有:
(a^x % p)^y % p = a^(xy) % p
// 证明如下:
令 a^x = mp + n, 其中 m, n 为自然数, 0 <= n < p,则有
C = (a^x % p)^y % p
= ((mp + n) % p)^y % p
= n^y % p
= (mp +n)^y % p
= a^(xy) % p
let a = 34, x = 3, p = 200, y = 3;
console.log((a ** x % p) ** y % p == a ** (x * y) % p); //true
console.log((a ** x % p) ** y % p);
console.log((a ** x % p) ** y % p);
由于 xy = yx 所以公式可以变形为:
(a^x mod p)^y mod p = (a^y mod p)^x mod p = password
- 把 a^x mod p 记作 K1,
- 把 a^y mod p 记做 K2
此时如果 Alice 和 Bob 在公网中,对 K1,K2,a,和 p 达成一致。
- Alice 持有 x 作为私有的,
- Bob 持有 y 作为私有的。
双方都能计算出 password ,而无法知道对方实际持有的 x 和 y。只要 x,y 足够大,公网中传输的数据,也很难计算出 password
加密强度保证:(有限群的离散对数问题) 对于 a^x mod p = Ka , p很大时,由 Ka 和 p、a 很难计算出 x
如图:
:::warning
⚠️ 注意:DH 无法防止中间人攻击
可能导致的现象: 攻击者假冒身份,和两边分别建立 DH,就可以实现中间人攻击了。
:::
RSA 密钥交换原理