BCH码
BCH码的构造
对于二元域GF(2)及其扩域GF(2m),设β=αi (i=1,2,…,2m-2)为GF(2m)上的非零元素,如果GF(2)上的多项式g(x)含有β,β2,…,βd-1等d-1个连续根,则由g(x)生成的循环码称为BCH码。d称为BCH码的设计距离。
本原BCH码与非本原BCH码
如果g(x)的d-1个连续根中含有本原元,则称g(x)生成的BCH码为本原BCH码;
如果g(x)的d-1个连续根均为非本原元,则g(x)生成的BCH码称为非本原BCH码。
生成多项式与码长
本原BCH码的构造步骤
- 根据码长n=2m-1确定m,查表找出m次本原多项式p(x),构造扩域GF(2m)
- 取本原元α,根据设计纠错能力t确定g(x)的根: α,α2, α3,…,α2t,查表找出根的最小多项式 M 1 M_1 M1(x), M 3 M_3 M3(x), …, M ( 2 t − 1 ) M_(2t-1) M(2t−1)(x)
- 计算上述最小多项式的最小公倍式,得到生成多项式g(x)。
例题:
以设计纠错能力t=1,2,3分别构造码长n=15的本原BCH码。