信息论与编码2 期末复习-BCH码

BCH码

BCH码的构造

对于二元域GF(2)及其扩域GF(2m),设β=αi (i=1,2,…,2m-2)为GF(2m)上的非零元素,如果GF(2)上的多项式g(x)含有β,β2,…,βd-1等d-1个连续根,则由g(x)生成的循环码称为BCH码。d称为BCH码的设计距离。

本原BCH码与非本原BCH码
如果g(x)的d-1个连续根中含有本原元,则称g(x)生成的BCH码为本原BCH码;
如果g(x)的d-1个连续根均为非本原元,则g(x)生成的BCH码称为非本原BCH码。

生成多项式与码长
在这里插入图片描述

本原BCH码的构造步骤

  1. 根据码长n=2m-1确定m,查表找出m次本原多项式p(x),构造扩域GF(2m)
  2. 取本原元α,根据设计纠错能力t确定g(x)的根: α,α2, α3,…,α2t,查表找出根的最小多项式 M 1 M_1 M1(x), M 3 M_3 M3(x), …, M ( 2 t − 1 ) M_(2t-1) M(2t1)(x)
  3. 计算上述最小多项式的最小公倍式,得到生成多项式g(x)。

例题:
以设计纠错能力t=1,2,3分别构造码长n=15的本原BCH码。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

BCH码的校验矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sec0nd_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值