# 基于Python的多摄像头监控与OCR识别系统

基于Python的多摄像头监控与OCR识别系统

在工业生产、安防监控等领域,常常需要对多个摄像头的视频流进行实时监控,并从中提取关键信息。本文将介绍一个基于Python的多摄像头监控与OCR识别系统,该系统能够实时捕获摄像头的视频流,利用OCR技术识别图像中的文本信息,并根据识别结果触发警报。

系统功能

1. 多摄像头监控

系统支持多个摄像头的实时监控,每个摄像头的视频流都会被独立捕获和处理。在本项目中,使用了三个摄像头,分别用于不同的监控任务。

2. OCR识别

系统使用PaddleOCR对摄像头捕获的图像进行文本识别。OCR结果将被进一步处理,以提取关键信息。

3. 警报触发

根据OCR识别结果,系统可以触发警报。警报通过串口通信控制外部设备(如声音和闪光警报器)。

4. 图形用户界面

使用PyQt5构建的GUI允许用户实时查看摄像头视频流、OCR结果,并手动控制警报。

技术栈

  • Python:主要编程语言。
  • OpenCV:用于图像处理和视频捕获。
  • PaddleOCR:用于光学字符识别。
  • PyQt5:用于构建图形用户界面(GUI)。
  • Serial:用于串口通信,控制外部设备(如警报器)。

代码实现

1. 依赖库

在开始之前,确保安装了所有必要的依赖库:

pip install opencv-python
pip install paddlepaddle
pip install paddleocr
pip install pyqt5
pip install pyserial

2. 代码结构

代码主要分为以下几个部分:

  1. 摄像头资源管理:定期释放摄像头资源,避免资源泄露。
  2. OCR识别:对摄像头捕获的图像进行OCR识别。
  3. 警报控制:通过串口通信控制警报器。
  4. 图形用户界面:使用PyQt5构建的GUI。

3. 摄像头资源管理

def release_capture2(cap):    # 定期释放usb摄像头资源
    while True:
        # 每隔一段时间释放一次资源,这里设置为 30min
        time.sleep(1800)
        cap.release()
        cap.open(opt.cap_numb3)

此函数在后台线程中运行,定期释放并重新打开摄像头资源。

4. OCR识别

def _performOCR1(self):
    result = ocr2.ocr(self.frame1, cls=False)
    if result and not None in result:
        try:
            for i in result[0]:
                mianji = are(i)
                ma = process_string(i[1][0])
                if i[1][1] > 0.92 and ma and 320 < i[0][0][0] < 1060 and mianji > 1000:
                    self.list_zong1.extend(ma)
        except:
            pass

此函数对摄像头1捕获的图像进行OCR识别,并将结果存储在列表中。

5. 警报控制

def sendCmdToDevice(cmd, ser):   # 控制警报器
    cmdd = bytes.fromhex(cmd)
    ser.write(cmdd)

此函数通过串口发送控制命令到警报器。

6. 图形用户界面

class PyQtMainEntry(QMainWindow, Ui_MainWindow):
    def __init__(self):
        super().__init__()
        self.setupUi(self)
        # 初始化摄像头和串口
        self.camera1 = HKCamera(CameraIp='192.168.20.14')
        self.camera2 = HKCamera(CameraIp='192.168.20.20')
        self.camera3 = cv2.VideoCapture(opt.cap_numb3)
        self.ser1 = serial.Serial(opt.SERIAL_PORT1, 9600, timeout=2.5)
        self.ser2 = serial.Serial(opt.SERIAL_PORT2, 9600, timeout=2.5)
        # 启动定时器
        self._timer = QtCore.QTimer(self)
        self._timer.timeout.connect(self._queryFrame)
        self._timer.setInterval(opt.frame_delay)

此部分代码初始化了摄像头和串口,并设置了一个定时器来定期捕获摄像头的帧。

使用方法

  1. 安装依赖库
    pip install opencv-python paddlepaddle paddleocr pyqt5 pyserial
    
  2. 运行程序
    python main.py
    
  3. 操作界面
    • 点击“打开”按钮启动摄像头监控。
    • 点击“关闭”按钮停止监控并释放资源。
    • 点击“清除”按钮清除OCR结果和警报状态。

结论

本文介绍了一个基于Python和OpenCV的多摄像头监控系统,结合了OCR技术和串口通信,能够实时监控多个摄像头的视频流、识别文本信息并触发警报。通过PyQt5构建的图形用户界面,用户可以方便地操作和监控系统状态。这个系统可以应用于多种工业和安全监控场景,提高监控效率和准确性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值