HDFS基础

一,HDFS重要的概念

1.数据

指存储的内容本身,比如文件、视频、图片等,这些数据底层最终是存储在磁盘等存储介质上的,一般用户无需关心只需要基于目录树进行增删改查即可,实际针对数据的操作由文件系统完成

2.元数据

元数据(metadata)又称之为解释性数据,记录数据的数据;文件系统元数据一般指文件大小、最后修改时间、底层存储位置、属性、所属用户、权限等信息.

海量数据存储遇到的问题

1.传统的方法成本高
2.传统的方法无法支持计算

二,分布式存储系统核心属性

1.分布式存储的优点

	多机横向扩展:机器不够加机器,理论上容量无限扩展

2.元数据记录功能

元数据记录下文件及其存储位置信息,快速定位文件位置

3.分块存储好处

文件分块存储在不同机器,针对块并行操作提高效率

4.副本机制的作用

几余存储,保障数据安全

三,HDFS简介

1.HDFS主要是解决大数据如何存储问题的。分布式意味着是HDFS是横跨在多台计算机上的存储系统
2.HDFS是一种能够在普通硬件上运行的分布式文件系统,它是高度容错的,适应于具有大数据集的应用程序,它非常适于存储大型数据(比如 TB 和 PB)
3.HDFS使用多台计算机存储文件,并且提供统一的访问接口(NameNode),像是访问一个普通文件系统一样使用分布式文件系统
4.大部分HDFS应用对文件要求的是write-one-read-many访问模型。一个文件一旦创建、写入、关闭之后就不需要修改了。这一假设简化了数据一致性问题,使高吞吐量的数据访问成为可能。
5.适合大文件,数据流式访问

在这里插入图片描述

四,HDFS的重要特性

1.主从架构
HDFS集群是标准的master/slave主从架构集群
一般一个HDFS集群是有一个Namenode和一定数目的Datanode组成
Namenode(维护元数据)是HDFS主节点,Datanode(复制文件块的存储)是HDFS从节点,两种角色各司其职,共同协调完成分布式的文件存储服务
2.分块存储
(1)HDFS中的文件在物理上是分块存储( block)的,默大小是128M(134217728),不足128M则本身就是一块.
(2)块的大小可以通过配置参数来规定,参数位于hdfs-default.xml中:dfs.blocksize。
3.副本机制
(1)文件的所有block都会有副本。副本系数可以在文件创建的时候指定,也可以在之后通过命令改变
(2)副本数由参数dfs.replication控制,默认值是3,也就是会额外再复制2份,连同本身总共3份副本
4.元数据记录
(1)文件自身属性信息
文件名称、权限,修改时间,文件大小,复制因子,数据块大小。
(2)文件块位置映射信息
记录文件块和DataNode之间的映射信息,即哪个块位于哪个节点上
Block0所在的机器

5.抽象统一的目录树结构(namespace)
(1)HDFS支持传统的层次型文件组织结构。用户可以创建目录,然后将文件保存在这些目录里。文件系统名字空间的层次结构和大多数现有的文件系统类似:用户可以创建、删除、移动或重命名文件。
(2)Namenode负责维护文件系统的namespace名称空间,任何对文件系统名称空间或属性的修改都将被amenode记录下来。
(3)HDFS会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,如:hdfs://namenode:port/dira/dir-b/dir-c/file.data。

五,hdfs shell操作

命令行界面:(英语:command-line interface,缩写:CLI),是指用户通过键盘输入指令,计算机接收到指令后
予以执行一种人际交互方式。

1.文件系统的协议

HDFS Shel1 CLI支持操作多种文件系统,包括本地文件系统(file:///)、分布式文件系统(hdfs://mn:8020)等具体操作的是什么文件系统取决于命令中文件路径URL中的前缀协议
如果没有指定前缀,则将会读取环境变量中的fs.defaultFS属性,以该属性值作为默认文件系统
1.file:///:操作本地文件系统
演示如下:以file:///为前缀,ls命令展示了本地文件夹下的文件
在这里插入图片描述
2.hdfs://hadoop01:8020/,显示通过Hadoop shell展示了hdfs根目录下的文件
在这里插入图片描述
3.如果不指定访问的文件系统,则访问我们在core-site.xml下配置的默认文件系统,这里我配置的默认访问hdfs根目录下的文件
在这里插入图片描述
敲命令的时候一定要知道自己访问的是那个文件系统

2,常用的命令

(1)创建文件夹
hadoop fs -mkdir [-p]
path 为待创建的目录
p选项的行为与Unixmkdir-p非常相似,它会沿着路径创建父目录
(2)查看指定目录下内容
hadoop fs -ls [-h] [-R] [ …]
path 指定目录路径
-h 人性化显示文件size
-R递归查看指定目录及其子目录
在这里插入图片描述
(3)上传文件到HDFS指定目录下
hadoop fs -puti [-f] [-p]
-f 覆盖目标文件(已存在下)
-p保留访问和修改时间,所有权和权限。
localsrc 本地文件系统(文件系统指定为客户端所在机器)
dst 目标文件系统(HDFS)
如图,将文件夹上传到hdfs中
在这里插入图片描述
(4)查看HDFS文件内容
hadoop fs -cat
读取指定文件全部内容,显示在标准输出控制台。
在这里插入图片描述
(5)下载HDFS件

hadoop fs -get [-f] [-p]
下载文件到本地文件系统指定目录,localdst必须是目录
-f 覆盖目标文件(已存在下)
p保留访问和修改时间,所有权和权限
在这里插入图片描述
(6)拷贝HDFS文件

hadoop fs -cp [-f] src … dst
-f 覆盖目标文件(已存在下)
(7)追加数据到HDES文件中(可以说是将多个文件组合一块)
hadoop fs -appendToFile …
将所有给定本地文件的内容追加到给定dst文件。
dst如果文件不存在,将创建该文件。
如果为-,则输入为从标准输入中读取。
(8)HDFS数据移动操作
hadoop fs -mv src… dst
移动文件到指定文件夹下
可以使用该命令移动数据,重命名文件的名称

六,各个角色的作用

一,主角色:namenode

NameNode是Hadoop分布式文件系统的核心,架构中的主角色
NameNode维护和管理文件系统元数据,包括名称空间目录树结构、文件和块的位置信息、访问权限等信息.
基于此,NameNode成为了访问HDFS的唯一入口。
datanode职责:
1.DataNode负责最终数据块block的存储。是集群的从角色,也称为Slave。
2.DataNode启动时,会将自己注册到NameNode并汇报自己负责持有的块列表
3.当某个DataNode关闭时,不会影响数据的可用性。NameNode将安排由其他DataNode管理的块进行副本复制
4.DataNode所在机器通常配置有大量的硬盘空间,因为实际数据存储在DataNode中。

二,从角色:datanode

DataNode是Hadoop HDFS中的从角色,负责具体的数据块存储
DataNode的数量决定了HDFS集群的整体数据存储能力。通过和NameNode配合维护着数据块.
namenode职责:
1.NameNode仅存储HDFS的元数据:文件系统中所有文件的目录树,并跟踪整个集群中的文件,不存储实际数据
2.NameNode知道HDFS中任何给定文件的块列表及其位置。使用此信息NameNode知道如何从块中构建文件
3.NameNode不持久化存储每个文件中各个块所在的datanode的位置信息,这些信息会在系统启动时从DataNode重建
4.NameNode是Hadoop集群中的单点故障(即NameNode故障会导致整个集群出现问题)
5.NameNode所在机器通常会配置有大量内存(RAM)

三,主角色辅助角色: secondarynamenode

Secondary NameNode充当NameNode的辅助节点,但不能替代NameNode。主要是帮助主角色进行元数据文件的合并动作。可以通俗的理解为主角色的“秘书”

七,HDFS的写流程

核心的概念:
1.Pipeline管道
Pipeline,中文翻译为管道。这是HDFS在上传文件写数据过程中采用的一种数据传输方式客户端将数据块写入第一个数据节点,第一个数据节点保存数据之后再将块复制到第二个数据节点,后者保存后将其复制到第三个数据节点。数据由一个方向流动
2.ACK应答响应
ACK(Acknowledge character)即是确认字符,在数据通信中,接收方发给发送方的一种传输类控制字符。表示发
来的数据已确认接收无误在HDFS pipeline管道传输数据的过程中,传输的反方向会进行ACK校验,确保数据传输安全
3.默认3副本存储策略
第一块副本:优先客户端本地,否则随机
第二块副本:不同于第一块副本的不同机架
第三块副本:第二块副本相同机架不同机器

HDFS写文件的过程:
在这里插入图片描述

1、HDFS客户端创建对象实例DistributedFileSystem,该对象中封装了与HDFS文件系统操作的相关方法
2、调用DistributedFileSystem对象的create()方法,通过RPC请求NameNode创建文件NameNode执行各种检查判断:目标文件是否存在、父目录是否存在、客户端是否具有创建该文件的权限。检查通过NameNode就会为本次请求记下一条记录,返回FSData0utputStream输出流对象给客户端用于写数据
3、客户端通过FSDataOutputStream输出流开始写入数据
4,客户端写入数据时,将数据分成一个个数据包,( packet 默认6k),内部组件DataStreamer请NameNode排选出适合存储数据副本的一组DataNode地址,默认是3副本存储
5,传输的反方向上,会通过ACK机制校验数据包传输是否成功
6、客户端完成数据写入后,在FSData0utputStream输出流上调用close(方法关闭)
7、DistributedFileSystem联系NameNode告知其文件写入完成,等待NameNode确认因为namenode已经知道文件由哪些块组成(DataStream请求分配数据块),因此仅需等待最小复制块即可成功返回最小复制是由参数dfs.namenode.replication.min指定,默认是1.

八,Hadoop MapReduce和Hadoop YARN

一,MapReduce

1.设计的思想
MapReduce的思想核心是“先分再合,分而治之"(因此可以并行处理)
所谓“分而治之”就是把一个复杂的问题,按照一定的“分解”方法分为等价的规模较小的若干部分,然后逐个解决,分别找出各部分的结果,然后把各部分的结果组成整个问题的最终结果。
Map表示第一阶段,负责“拆分",即把复杂的任务分解为若千个“简单的子任务”来并行处理。可以进行拆分的,前提是这些小任务可以并行计算,彼此间几乎没有依赖关系
Reduce表示第二阶段,负责“合并”:即对map阶段的结果进行全局汇总这两个阶段合起来正是MapReduce思想的体现
2.执行的阶段
map阶段:map:对一组数据元素进行某种重复式的处理
reduce阶段:对Map的中间结果进行某种进一步的结果整理
MapReduce处理的数据类型是<key,value>键值对
2.MapReduce相关概念
分布式计算概念:
分布式计算是一种计算方法,和集中式计算是相对的。
随着计算技术的发展,有些应用需要非常巨大的计算能力才能完成,如果采用集中式计算,需要耗费相当长的时间来完成
分布式计算将该应用分解成许多小的部分,分配给多台计算机进行处理。这样可以节约整体计算时间,大大提高计算效率
MapReduce局限性
MapReduce虽然有很多的优势,也有相对得局限性,局限性不代表不能做,而是在有些场景下实现的效果比较差,并不适合用MapReduce来处理,主要表现在以下结果方面:
实时计算性能差
MapReduce主要应用于离线作业,无法作到秒级或者是亚秒级得数据响应
不能进行流式计算
流式计算特点是数据是源源不断得计算,并且数据是动态的;而MapReduce作为一个离线计算框架,主要是针对静态数据集得,数据是不能动态变化得。
3.MapReduce实例进程
一个个完整的MapReduce程序在分布式运行时有三类
MRAppMaster:负责整个MR程序的过程调度及状态协调
MapTask:负责map阶段的整个数据处理流程ReduceTask:负责reduce阶段的整个数据处理流程
4.通过官方的实例,体会mapreduce的运行过程
评估圆周率
hadoop jar hadoop-mapreduce-examples-3.3.6.jar pi 2 2
参数的解释:
pi表示,执行的是评估圆周率
第二个参数:用于指定map阶段运行的任务task次数,并发度,这里是10
第三个参数:用于指定每个map任务取样的个数,这里是50。
提交运行后,我们发现,程序先连接yarn的resourcemannger
在这里插入图片描述
单词统计
hadoop jar hadoop-mapreduce-examples-3.3.6.jar wordcount /wordcount/input /wordcount/output
5.Map阶段的执行流程
第一阶段:把输入目录下文件按照一定的标准逐个进行逻辑切片形成切片规划。默认Split size = Block size( 128M),每一个切片由一个MapTask处理。( getSplits)
第二阶段:对切片中的数据按照一定的规则读取解析返回<key,value>对。默认是按行读取数据。key是每一行的起始位置偏移量,value是本行的文本内容。(TextInputFormat )
第三阶段:调用Mapper类中的map方法处理数据每读取解析出来的一个<key,value>,调用一次map方法
第四阶段:按照一定的规则对Map输出的键值对进行分区partition。默认不分区,因为只有一个reducetask。分区的数量就是reducetask运行的数量
第五阶段:Map输出数据写入内存缓冲区,达到比例溢出到磁盘上。溢出spill的时候根据key进行排序sort。默认根据key字典序排序。
第六阶段:对所有溢出文件进行最终的merge合并,成为一个文件,并且写入到磁盘当中
mapreduce的全部阶段
6.reduce阶段的执行流程

以单词统计为例
第一阶段:ReduceTask会主动从MapTask复制拉取属于需要自己处理的数据
第二阶段:把拉取来数据,全部进行合并merge,即把分散的数据合并成一个大的数据。再对合并后的数据排序
第三阶段:是对排序后的键值对调用reduce方法。键相等的键值对调用一次reduce方法。最后把这些输出的键值对写入到HDFS文件中。
7.Shuffle阶段
Shuffle的本意是洗牌、混洗的意思,把一组有规则的数据尽量打乱成无规则的数据而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规则“打乱”成具有一定规则的数据,以便reduce端接收处理
一般把从Map产生输出开始到Reduce取得数据作为输入之前的过程称作shuffle。

如图所框为shuffle
注意:由于shuffle涉及到多次磁盘读写,因此mare程序缓慢。
8.yarn简介
Apache Hadoop YARN (Yet Another Resource Negotiator,另种资源协调者)是一种新的Hadoop资源管理器
YARN是一个通用资源管理系统和调度平台,可为上层应用提供统一的资源管理和调度它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。

YARN功能说明
资源管理系统:集群的硬件资源,和程序运行相关,比如内存相关,CPU等
调度平台:多个程序同时申请计算资源如何分配,调度的规则(算法)
通用:不仅仅支持MapReduce程序,理论上支持各种计算程序。YARN不关心你干什么,只关心你要资源,在有的情况下给你,用完之后还我
可以把Hadoop YARN理解为相当于一个分布式的操作系统平台,而MapReduce等计算程序则相当于运行于操作系统之上的应用程序,YARN为这些程序提供运算所需的资源(内存、CPU等)。
Hadoop能有今天这个地位,YARN可以说是功不可没。因为有了YARN,更多计算框架可以接入到 HDFS中,而不单单是 MapReduce,正是因为YARN的包容,使得其他计算框架能专注于计算性能的提升。HDFS可能不是最优秀的大数据存储系统,但却是应用最广泛的大数据存储系统,YARN功不可没。
yarn支持的计算框架
yarn中出现的组件
ResourceManager:整个集群的资源管理者
NodeManager:节点资源的管理者
ApplicationMaster:每一个任务的老大,负责申请资源,进行任务的监督
Client:提交任务地方
Container容器(资源的抽象):便于区分不同的任务,我个人任务可以理解成抽象的资源的集合,程序在里面运行
向提交资源的过程:
第1步、用户通过客户端向YARN中ResourceManager提交应用程序(比如hadoop jar提交MR程序);
第2步、ResourceManager为该应用程序分配第一个Container(容器),并与对应的NodeManager通信,要求它在这个Container中启动这个应用程序的ApplicationMaster。
第3步、ApplicationMaster启动成功之后,首先向ResourceManager注册并保持通信,这样用户可以直接通过ResourceManage查看应用程序的运行状态(处理了百分之几)
第4步、AM为本次程序内部的各个Task任务向RM申请资源,并监控它的运行状态
第5步,一旦ApplicationMaster 申请到资源后,便与对应的 NodeManager 通信,要求它启动任务NodeManager 为任务设置好运行环境后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务
第6步NodeManager 为任务设置好运行环境后,将任务启动命令写到一个脚本中,并通过运行该脚本启动任务
第7步、各个任务通过某个 RPC 协议向 ApplicationMaster 汇报自己的状态和进度,以让 ApplicationMaster随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。在应用程序运行过程中,用户可随时通过 RPC句 ApplicationMaster 查询应用程序的当前运行状态
第8步、应用程序运行完成后,ApplicationMaster 向 ResourceManager 注销并关闭自己
9.资源的调度
(1).FIFO Scheduler概述:先提交的先执行,后提交的后执行
优势
无需配置、先到先得、易于执行
坏处:
任务的优先级不会变高,因此高优先级的作业需要等待不适合共享集群
(2).Capacity Scheduler概述:通过为每个组织分配专门的队列,然后再为每个队列分配一定的集群资源,这样整个集群就可以通过设置多个队列的方式给多个组织提供服务了。
层次化的队列设计( Hierarchical Queues )
层次化的管理,可以更容易、更合理分配和限制资源的使用。(我的理解是可以在一个划分的基础上再进行划分)

容量保证( Capacity Guarantees )
每个队列上都可以设置一个资源的占比,保证每个队列都不会占用整个集群的资源

安全( Security )
每个队列有严格的访问控制。用户只能向自己的队列里面提交任务,而且不能修改或者访问其他队列的任务

弹性分配( Elasticity)
空闲的资源可以被分配给任何队列。
当多个队列出现争用的时候,则会按照权重比例进行平衡

(3).Fair Scheduler概述(类似操作系统的时间分片)
Fair Scheduler叫做公平调度,提供了YARN应用程序公平地共享大型集群中资源的另一种方式。使所有应用在平均情况下随着时间的流逝可以获得相等的资源份额。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值