贪心算法的题解

本文探讨了贪心算法在解决实际问题中的应用,包括排队打水问题、2背包性价比问题和区间调度问题。通过案例分析,阐述了贪心策略的选择,如在打水问题中按顺序安排以减少总等待时间,在2背包问题中依据性价比选取物品,在区间调度问题中通过排序寻找最多不冲突的工作。贪心算法的关键在于找到合适的局部最优解以达到全局最优。
摘要由CSDN通过智能技术生成

在上一节中,明确了贪心算法是从局部·最优解得到整体最优解。
1排队打水

问题描述:

有n个人排队到r个水龙头去打水,他们装满水桶的时间t1、t2…………tn为整数且各不相等,应如何安排他们的打水顺序才能使他们总共花费的时间最少?(含有等待时间)

样例输入
4 2
2 6 4 5
输出样例
23
本题是一个贪心的问题,我首先思考的确实是如何才能让时间最少,但我却陷入了一个更大的误区,这个误区就是无论哪一个在前面,都会花每一个人应该接水的时间,也就是说,最后的时间不会有任何变化都是各个时间相加。就是这个地方。但是我忽略了一个最重要的问题就是他们花费的时间包含了等待的时间。
思考:越靠前面计算次数越多,因此越小排在前面得出的结果越小,也就是从1~n,再一次重新n+1-2n依次加上。

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <vector>
#include <map>
#include <queue>
#include <algorithm>
#include <math.h>
#include <cstdio>
using namespace std;
int main(){
   
{
   int n,r,i,s[1000],a[1000];//定义一个数组a表示时间
for(i=1;i<=n;i++){
   
	cin>>a[i];}
sort(a,a+n);//对数组进行排序
cin>>n>>r;//输入人数与水龙头个数
int j=0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值