函数零点计算

前言  

针对任意连续函数的二分法、Aitken方法和牛顿法的实现,以

f(x)=x^{3}-x-1

为例。(默认大家已熟悉算法原理)

一、二分法

(1)定义函数

function F=F(x)
F=x.^3-x-1
end

(2)二分法

a=-9%区间左端点
b=3%区间右端点
format long
if F(a)==0
   fprintf('x=%d is a root',a)
elseif F(b)==0
    fprintf('x=%d is a root',b)
elseif F(a)*F(b)<0
    for i=1:50
        dominl(1)=a
        dominr(2)=b
        domin=[dominl(i),dominr(i)]
        c(i)=sum(domin)/2
        A=F(c(i)).*F(domin)>0
        if A==zeros(1,2)
           fprintf('x=%d is a root',c(i))
        else
           dominl(i+1)=sum((1-A).*domin)
           dominr(i+1)=c(i)
        end
        fprintf('x=%d是一个近似根',c(i))
    end
else
disp('一般二分法不能判断函数在该区间上是否有根(建议对区间分段)')
end
t=a:0.1:b;
plot(F(t))
p=[1 0 -1 -1]
roots(p)

(3)结果

(二)Aitken方法

(1)定义g(x)函数

function G=G(x)
G=power(x+1,1/3)%G(x)必须是连续函数
end

(2)判断收敛性

a=1.2%区间左端点
b=1.4%区间右端点
syms x
G1(x)=diff(G(x))
fmin=fminbnd(@(x)G(x),a,b)
fmax=fminbnd(@(x)-G(x),a,b)
dfmax=fminbnd(@(x)-abs(G1(x)),a,b)
dfmin=fminbnd(@(x)abs(G1(x)),a,b)
A=[]
A(1)=a<G(fmin)<b
A(2)=a<G(fmin)<b
A(3)=abs(G1(dfmax))<1
if A==ones(1,3)
    disp('全局收敛')
elseif abs(G1(dfmin))<1
    disp('存在局部收敛,建议缩小区间')
else 
    disp('在该区间不存在收敛子区间,建议寻找其他可能的根区间或更换等价方程')
end

(3)Aitken方法

y0=1.3%任意取收敛区间中的一个数
format long
for i=1:50
    x0(1)=y0
    x1(i)=G(x0(i))
    x2(i)=G(x1(i))
    x(i)=x0(i)-(power(x0(i)-x1(i),2))/(x0(i)-2*x1(i)+x2(i))
    if abs(x(i)-x0(i))>eps
        x0(i+1)=x(i)
    else
        fprintf('%d是近似根',x(1,end-1))
       break
    end
end

% p=[1 0 -3 1]
% roots(p)

(4)结果

(三)牛顿法

(1)一般牛顿法

x0=1.3
syms x
F1(x)=diff(F(x))
for i=1:100

    x1=x0-F(x0)/F1(x0)
    if abs(x0-x1)<eps
        fprintf('%d is a root',x1)
    else
        x0=x1
    end
end

(2)结果

 总结

  牛顿法的算法,我尝试了x-1x^{2}-4(x-3)^{3}函数,近似解的效果都不错,但是在面对x^{3}-x-1时就不太行,我也不知道为什么。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胡枝子.yue

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值