题目链接:魔法少女
前些时间虚渊玄的巨献小圆着实火了一把。 在黑长直(小炎)往上爬楼去对抗魔女之夜时,她遇到了一个问题想请你帮忙。 因为魔女之夜是悬浮在半空的,所以她必须要爬楼,而那座废墟一共有 nn 层,而且每层高度不同,这造成小炎爬每层的时间也不同。不过当然,小炎会时间魔法,可以瞬间飞过一层或者两层[即不耗时]。但每次瞬移的时候她都必须要至少往上再爬一层(在这个当儿补充魔力)才能再次使用瞬移。爬每单位高度需要消耗小炎 11 秒时间。 消灭魔女之夜是刻不容缓的,所以小炎想找你帮她找出一种最短时间方案能通往楼顶。
输入格式
第一行一个数字 N(1 \le N \le 10000)N(1≤N≤10000),代表楼层数量。
接下去 NN 行,每行一个数字 H(1 \le H \le 100)H(1≤H≤100),代表本层的高度。
输出格式
输出一行,一个数字 SS,代表通往楼顶所需的最短时间。
Sample Input
5
3
5
1
8
4
Sample Output
1
题解:如果层数i=1,如果在不飞的情况下,f[1][0] = h[1];在飞的情况下,
f[1][1] = 0;
如果层数i=2,如果在不飞的情况下,f[2][0] = h[2];在飞的情况下,f[2][1] = 0;
如果层数i=3,如果在不飞的情况下,f[3][0] = min(f[2][0], f[2][1])+h[3];
在飞的情况下(可以是飞一层到i层,也可以是飞2层),
f[3][1] = min(f[2][0], f[1][0]);
所以可以看出,状态转移方程为f[i][0] = min(f[i-1][0], f[i-1][1])+h[i]和f[i][1] = min(f[i-1][0], f[i-2][0]);
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[10250][2];
int a[54512];
int main()
{
memset(dp,0,sizeof(dp));
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
dp[1][0]=a[1];
dp[1][1]=0;
dp[2][0]=a[2];
dp[2][1]=0;
for(int i=3;i<=n;i++)
{
dp[i][0]=min(dp[i-1][0],dp[i-1][1])+a[i];
dp[i][1]=min(dp[i-1][0],dp[i-2][0]);
}
printf("%d\n",min(dp[n][0],dp[n][1]));
}