CINTA作业七

1.如果H1和H2是群G的正规子群,证明H1H2也是群G的正规子群

如题,H1和H2是群G的正规子群,即任意g∈G,有gH1=H1g,gH2=H2g。即对任意h1,h1’∈H1,h2,h2’∈H2,都有gh1=h1’g和gh2=h2’g。则有gh1h2=h1’gh2=h1’h2’g,于是有gH1H2∈H1H2g。同理,h1h2g=gh1’h2’即有H1H2g∈gH1H2,证得H1H2也是群G的正规子群。

2.定义映射 ϕ : G |→ G 为:g |→g^2。请证明 ϕ 是一种群同态当且仅当 G 是阿贝尔群。

充分性:由于ϕ是群同态,于是对任意a,b∈G,都有ϕ(a,b)=ϕ(a)∘ϕ(b),即(ab)2=a2b^2即abab=aabb两次消去律得ab=ba因此G是阿贝尔群。
必要性:因为G是阿贝尔群,因此对于任意a,b都有a
b=ba.因此ϕ(ab)=(ab)2=ab*ab=ba*ab=ba2b=a2b2,因此ϕ 是一种群同态。

3.如果 H 是群 G 上指标为 2 的子群,则 H 是 G 的正规子群

H 是群 G 上指标为 2 的子群,则[G:H]=2,对任意g∈G,当g∈G且g∈H时,gH=Hg=H,显然H 是 G 的正规子群。当g∈G且g!∈H时,给定任意h∈H,有gh=h’∈G且!∈H,即存在H’=G-H,令h’∈H。gh’∈H’,h’g∈H’,而对任意h’∈H’,有h1’∈H’,h2’∈H’,令gh1=h’∈gH,也有h2’=h2g∈Hg,因此gH=Hg=H’,因此对任意g∈G,都有gH=Hg,得证如果 H 是群 G 上指标为 2 的子群,则 H 是 G 的正规子群。

4. 如果群G是循环群,则商群G/H也是循环群

G是循环群,对任意g∈G,有gn1,gn2属于G,令gn3=gn1*gn2,(gn1H)(gn2H)=gn3H,因此G/H也是循环群

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值