CINTA作业七:同态


3. 如果 H1 和 H2 是群 G 的正规子群,证明 H1H2 也是群 G 的正规子群。


证明:
由命题9.5知,
要证H1H2是群G的正规子群, 首先证明H1H2是群G的子群,再去证 ∀ \forall g ∈ \in G,有gH1H2g-1=H1H2即可。
证明群G的两个子群的交仍是群G的子群显然正确,因为任取h ∈ \in H1H2, 有h ∈ \in H1, h ∈ \in H2,满足群的公理,且单位元e=e ⋅ \cdot e ∈ \in H1H2
要证gH1H2g-1=H1H2, 证明两个集合相互包含即代表相等。
1.证gH1H2g-1 ⊂ \subset H1H2
由H1 和 H2 是群 G 的正规子群以及命题9.5知,
∀ \forall h1 ∈ \in H1, h2 ∈ \in H2, g ∈ \in G,存在h1 ∈ \in% H1, h2 ∈ \in H2, 使得gh1g-1=h1, gh2g-1=h2
那么gh1g-1gh2g-1=h1h2=gh1h2g-1, 因此可得gH1H2g-1 ⊂ \subset H1H2
2.证H1H2 ⊂ \subset gH1H2g-1
∀ \forall g-1 ∈ \in G, h1 ∈ \in H1, h2 ∈ \in H2,存在h1 ∈ \in% H1, h2 ∈ \in H2, 使得g-1h1g=h1, g-1h2g=h2
那么g-1h1gg-1h2g=h1h2=g-1h1h2g, 等式两边同时左乘g,再右乘g-1得h1h2=gh1h2g-1, 因此可得H1H2 ⊂ \subset gH1H2g-1
3.结合上面两点,可得H1H2是群G的正规子群。


5. 定义映射 ϕ \phi ϕ : G → \rightarrow G 为:g → \rightarrow g2。请证明 ϕ \phi ϕ 是一种群同态当且仅当 G 是阿贝尔群


证明:
1.充分性:
ϕ \phi ϕ是一种群同态可知 ∀ \forall a,b ∈ \in G,有 ϕ \phi ϕ(a+b)= ϕ \phi ϕ(a) ϕ \phi ϕ(b),即g2(a+b)=g2ag2b
那么gagbgagb=gagagbgb,等式两边同时左乘g-a,右乘g-b可得gbga=gagb,因此群G是阿贝尔群。
2.必要性:
当群G是阿贝尔群时, ∀ \forall a,b ∈ \in G,有gagb=gbga
那么等式两边同时左乘ga,右乘gb可得到gagagbgb=gagbgagb
即g2ag2b=ga+bga+b=g2(a+b),因此得到 ϕ \phi ϕ(a+b)= ϕ \phi ϕ(a) ϕ \phi ϕ(b)。
由充分性以及必要性,题目得证。


7. 证明:如果 H 是群 G 上指标为 2 的子群,则 H 是 G 的正规子群。


证明:
由题可知[G:H]=2,即群G的子群H的陪集组成,把群G划分成H和G-H两部分。
∀ \forall g ∈ \in G,g有两种情况:
1.g ∈ \in H时,由群元素之间满足封闭性可知 ∀ \forall h ∈ \in H,存在h ∈ \in H,有gh=h,所以gH=H,同理Hg=H,因此gH=Hg。
2.g ∉ \notin /H时,左陪集gH=G-H,右陪集Hg=G-H,因此gH=Hg。
可知H是G的正规子群。


9. 证明:如果群 G 是循环群,则商群 G/H 也是循环群。


证明:
首先可知,商群G/H是群G的正规子群H的陪集集合,G/H={aH|a ∈ \in G},
因此若G是循环群,假设群G的一个生成元为g,则 ∀ \forall a ∈ \in G,有gk=a,k ∈ \in Z。
那么G/H={gkH|k ∈ \in Z},又由商群的群操作有,gkH=(gH)k,那么G/H可表示为G/H={(gH)k|k ∈ \in Z}
因此商群G/H也是循环群,生成元为gH。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值