目录
一、计算机的数制(进制)
数制:计数的方法,指一组固定的符号和统一的规则表示数值的方法
数位:指数字符号在一个数中所处的位置
基数:指在某种进位计数制中,数位上所能使用的数字符号的个数
位权:指在某种进位计数制中,数位所代表的大小,即处在某一位上的“1”所表示的数值的大小
公式:
- x进制数的基数是x
- 数位--从右开始数第一个数字是第0位
- 位权--每一位数值乘基数的数位次方
二、十进制数制系统(一种D一种下标为10和不标)
十进制数制系统包括10个数字
0、1、2、3、4、5、6、7、8、9
以数字542为例
百位 十位 个位
5 4 2
1.十进制转十六进制
十进制转十六进制和十六进制转十进制是互逆的,拿十进制150来举例。
150/16=9(余数为6)
9/16=0(余数为9)
整合为96,得到十六进制数。
2.十进制转二进制
十进制转二进制就是二进制转十进制的逆过程,拿十进制150来举例。
150/2=75(余数为0)
75/2=37(余数为1)
37/2=18(余数为1)
18/2=9(余数为0)
9/2=4(余数为1)
4/2=2(余数为0)
2/2=1(余数为0)
1/2=0(余数为1)
整合为10010110即是转换的二进制。
三、二进制数制系统(B)
1.二进制的定义
二进制的意思是基于两个数字
这些二进制数或二进制位表示为0和1
8bits=1Byte
2.二进制的优点
1.二进制只需用两种状态表示数字,容易实现
2.二进制的运算规则简单
0+0=0,0+1=1,1+0=1,1+1=0
0x0=0,0x1=0,1x0=0,1x1=1
3.用二进制容易实现逻辑运算
真 假
常见八位二进制
10000000-----------128
11000000-----------192
11100000-----------224
11110000------------240
11111000------------248
11111100------------252
11111110------------254
11111111------------255
3.二进制转十进制
拿二进制数10010110举例
这里就不需要划分区域,而是直接进行计算。(计算方法是从右向左依次乘上2的n次幂,n从零开始,^符号表示次幂)
1*2^7+0*2^6+0*2^5+1*2^4+0*2^3+1*2^2+1*2^1+0*2^0=150
4.二进制转十六进制
拿二进制数100101100举例
二进制转十六进制和二进制转八进制类似,不过转十六进制划分区域为4个,不足也是补零
000100101100
0001 0010 1100
0*2^3+0*2^2+0*2^1+1*2^0=1 0*2^3+0*2^2+1*2^1+0*2^0=2 1*2^3+1*2^2+0*2^1+0*2^0=12(12也就是十六进制中的C)
合并为12C
四、十六进制数制系统(0x数值、数值H、(数值)16)
十六进制数制系统的基数是16
前十个数字是0和9
后面是A、BCDEF分别表示10、11、12、13、14、15
0-0-0000
1-1-0001
2-2-0010
3-3-0011
4-4-0100
5-5-0101
6-6-0110
7-7-0111
8-8-1000
9-9-1001
A-10-1010
B-11-1011
C-12-1100
D-13-1101
E-14-1110
F-15-1111
(从右边开始)每四位二进制数可换算成一位十六进制数
(从右边开始)每三位二进制数可换算成一位八进制数
1.十六进制转二进制
十六进制转二进制和二进制转十六进制是互逆的,我们拿12C来举例。(不足的位数补零)
1 2 C(转化为12)
1/2=0(余数为1) 2/2=1(余数为0) 12/2=6(余数为0)
1/2=0(余数为1) 6/2=3(余数为0)
3/2=1(余数为1)
1/2=0(余数为1)
0001 0010 1100
整合为000100101100
2.十六进制转十进制
拿十六进制96来举例(由右向左依次乘以16的n次幂,n从零开始)
9*16^1+6*16^0=150
五、存储量
计算机存储量可以用位和字节(字节是最小单位)计量
8位- 1字节
1024字节- 1KB
1024KB- 1MB
1024MB- 1GB
1024GB- 1TB
总结
主要学习了进制的转换,需要重点掌握二进制、十六进制与十进制的转换