吴恩达机器学习
文章平均质量分 72
weixin_52591187
这个作者很懒,什么都没留下…
展开
-
吴恩达机器学习笔记DAY-7(自用版)
某些机器学习库可能在后端使用这种复杂方法求解w&b,但对于大多学习算法,梯度下降提供了更好的方法完成工作。参数:①向量w=[w1,w2,w3,...... wn]: 第i个训练示例(实际上是有各种因素的列表,比如下图中第二行方框)①回顾:之前更多的是一个特征x(例如房屋的大小->预测房屋的价格)速度慢(feature>10000):第i个训练样例中的第j个特征(列表中的一个值)........卧室数量,层数,房屋年龄等。以前单维度:f(x)=wx+b。多元线性回归:f(x)=原创 2024-07-04 23:20:24 · 572 阅读 · 0 评论 -
吴恩达机器学习笔记DAY-6(自用版)
①梯度下降:不仅用于线性回归,还用于训练一些先进的神经网络模型,也被成为深度学习模型。②梯度下降是一种可用于尝试最小化任何函数的算法,不仅仅是最小化。线性回归的成本函数。③事实证明,梯度下降适用于更一般的函数,原创 2024-07-02 18:22:52 · 1213 阅读 · 0 评论 -
吴恩达机器学习Day-5(自用版)
Objective目的:minimizeJ(w,b)原创 2024-07-01 16:18:39 · 519 阅读 · 0 评论 -
吴恩达机器学习DAY-3(自用版)
在分类模型中:只有少量可能的输出(ps:区分猫狗),因此存在一组离散的,有限的可能输出(predicts categories && small number of possible outputs)在这个未分级的实验中,您可以看到线性回归模型是如何在代码中定义的,并且您可以看到显示模型对给定w和b的选择的一些数据的拟合程度的图表。您还可以尝试不同的w和b值,看看它是否改善了对数据的拟合。f的工作是采用新的输入x和输出进行估计和预测y-hat(y-hat是对y的估计或预测,y指代真训练集中的真实值);原创 2024-04-14 10:54:11 · 980 阅读 · 1 评论 -
吴恩达机器学习Day-4(自用版)
J是衡量平方误差有多大的成本函数,因此选择最小化这些平方误差的w,使他们尽可能小,才能为我们提供一个好的模型。原创 2024-04-30 23:09:30 · 417 阅读 · 1 评论 -
吴恩达机器学习DAY-2(自用版)
聚类算法是一种无监督算法,获取没有标签的数据并且尝试自动将他们分组到集群中。原创 2024-04-07 11:24:46 · 471 阅读 · 0 评论 -
吴恩达机器学习DAY-1(自用版)
①Arthur Samuel:没有直接对问题进行显式编程的情况下,让 计算机拥有学习能⼒的研究领域(跳棋程序)(选B)②机器学习算法一般来说可以分为两大类:-监督学习(Supervised Learning)-使用较多,快速发展-无监督学习(Unsupervised Learning)原创 2024-04-06 21:04:11 · 518 阅读 · 0 评论