最小编辑距离 动态规划 python

  • m和n的两个字符串,设有以下几种操作:替换(R),插入(I)和删除(D)且都是相同的操作。求转换一个字符串到另一个需要的最少操作数量。这个数量就可以被视为最小编辑距离。如:acd与ace的EditionDistance距离为1,abc与cab的距离为2。

w1=input()
w2=input()
n=len(w1)+1
m=len(w2)+1
dp=[[0]*m for i in range(n)]
for i in range(n):
    dp[i][0]=i
for j in range(m):
    dp[0][j]=j
for i in range(1,n):
    for j in range(1,m):
        if w1[i-1]==w2[j-1]:#字符串下标从零开始
            dp[i][j]=dp[i-1][j-1]
        else:
            dp[i][j]=min(dp[i-1][j-1],dp[i-1][j],dp[i][j-1])+1
print(dp[n-1][m-1])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值