最小编辑距离 (MED)实现-Python

本文介绍了一个使用Python实现的最小编辑距离算法,该算法用于计算两个字符串之间的相似度,适用于拼写纠错、生物序列对比等场景。作者详细阐述了实验过程,包括动态规划的实现、编辑操作的代价设置以及如何回溯显示最小编辑路径。此外,代码能够处理中英文字符串,并允许用户自定义操作代价。

此帖内容是去年9月份自己做的小实验~

1. 实验目的

        最小编辑距离旨在定义两个字符串之间的相似度,定义相似度可以用于拼写纠 错、计算生物学上的序列对比、机器翻译、信息提取和语音识别等。

        最小编辑距离就是指将一个字符串通过插入、删除和替换的编辑操作转变为另 一个字符串所需要的最小的编辑次数。

        本次实验要求实现英文(及中文)字符串的最小编辑距离,计算并显示最小编辑路径;并且要求可以输入不同的字符串,以及可以同过修改操作代价来改 变最小编辑距离。

2. 实验环境

Python3.8.5。

3. 实验方法

 

4. 实验结果

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值