
《GPT多模态大模型与AI Agent智能体》新书内容
文章平均质量分 92
陈敬雷-充电了么-CEO兼CTO
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
0代码搞定ChatBI!Doris+DeepSeek+Dify保姆级搭建教程:从环境到可视化全流程,附可复用DSL(小白也能上手)
本文介绍了如何用Doris+DeepSeek+Dify搭建零代码ChatBI系统,实现企业级对话式数据分析。方案通过Doris作为高性能实时数据仓库,DeepSeek大模型进行自然语言转SQL处理,Dify低代码平台完成流程编排,形成完整闭环。文章详细解析了三个组件的协作逻辑和优势,并提供了从环境部署到可视化输出的6步实操指南,特别强调了Text2SQL节点的关键配置和常见避坑点。该方案以低门槛、高落地性为特点,让技术小白也能快速搭建ChatBI系统,适用于中小企业数字化转型场景。原创 2025-10-03 22:00:36 · 385 阅读 · 0 评论 -
从“报表堆里扒数据”到“大模型对话秒出洞察”!大模型重塑BI:ChatBI如何破解中小企业“数据用不动”难题?
文章摘要: 大模型技术正推动商业智能(BI)进入“ChatBI”时代,通过自然语言交互破解中小企业“数据用不动”难题。传统BI依赖技术团队开发静态报表,自助BI仍降低门槛但仍需业务人员掌握数仓逻辑,而基于大模型的智能BI 实现“对话即分析”:用户通过自然语言查询数据(如“华东有不少于5家客户说华东区业绩TOP5员工”),系统自动生成SQL并+优化建议,并结合RAG技术智能匹配可视化模板。东尔科技采用Text2DSL方案(非直接底层SQL),通过预设业务指标提升响应速度与准确性,尤其适合数据分散、技术能力弱的原创 2025-10-03 21:54:56 · 401 阅读 · 0 评论 -
从单模态到多模态王者!DeepSeek技术演进全路线拆解:MoE架构、MLA黑科技、Janus-Pro破局,每一步都踩中行业痛点
摘要: DeepSeek通过三大技术主线(LLM、VL、Janus系列)实现多模态突破。LLM系列从初代数据优化到V3的671B参数+多令牌预测,以MoE和MLA提升效率;VL系列通过混合编码器和动态瓦片技术解决高分辨率图像处理难题;Janus系列采用双视觉编码器解耦理解与生成任务,实现多模态统一。其技术演进精准解决行业痛点,如训练成本高、推理效率低等,推动国产大模型从跟跑到领跑的跃迁。(150字)原创 2025-10-01 22:38:46 · 1122 阅读 · 0 评论 -
硬刚制裁、反超范式!DeepSeek的中国式创新:不堆算力不圈钱,凭什么让硅谷紧张?
摘要: DeepSeek以“中国式创新”打破AI大模型的算力内卷,通过强化学习裸训、顿悟现象可视化、模型蒸馏优化及PTX编程语言等“巧劲”,在芯片制裁下实现技术突破。其“大道求简、平衡求熵”的思维,摒弃堆参数与商业变现,专注算法优化与开源生态生态共建,为中小团队提供了“低资源高效益”的创新样本。这一路径不仅挑战硅谷的算力霸权,更重塑了中国AI创新的全球话语权,展现技术韧性下的本土智慧。(149字)原创 2025-10-01 22:32:32 · 752 阅读 · 0 评论 -
狂降75%!大模型DeepSeek-V3.2 API杀疯了:性能零衰减的秘密,藏在DSA这两大“黑科技”里
摘要: DeepSeek-V3.2-Exp大模型通过自研的DSA稀疏注意力机制(含“闪电索引器”和“稀疏MLA”两大核心技术),将长文本处理的计算复杂度从O(L²)降至O(Lk),实现效率飞跃。其“先筛选后计算”的协同工作流程(投影-评分-选择-计算)在保证性能零衰减的同时,使API调用成本狂降75%,尤其擅长法律、医疗等长文本场景。该技术突破标志着国产大模型在自研创新与商业普惠上的平衡,为行业提供高效低成本解决方案。 (字数:149)原创 2025-10-01 22:18:55 · 651 阅读 · 0 评论 -
炸场!DeepSeek-V3.2-Exp横空出世:成本砍半+长文本飞起来,国产大模型再破技术死结
摘要: DeepSeek推出实验性版本V3.2-Exp,突破性采用自主研发的DSA稀疏注意力技术,将长文本处理效率提升3倍,同时API成本降低50%以上。DSA通过“闪电索引器”“密集预热”“稀疏训练”三步实现精准计算,性能与密集注意力模型持平。国产GPU厂商同步适配,形成硬软协同生态。此次升级不仅解决长文本高成本、低效率的行业痛点,更标志着国产大模型从技术跟跑到原创领跑的关键跨越,推动医疗、法律等领域AI应用规模化落地。原创 2025-10-01 22:13:36 · 943 阅读 · 0 评论 -
智能问数告别SQL依赖!9款NLP2SQL神器,让业务人员直接对话数据,企业ChatBI落地不用愁
摘要: NL2SQL工具通过将自然语言转换为SQL查询,帮助企业降低数据使用门槛,实现业务人员与数据的直接对话。本文介绍了9款主流工具,包括支持多数据库和可视化的Chat2DB、轻量级的SQL Chat、灵活的Vanna框架、企业级API引擎Dataherald,以及生成式BI工具WrenAI等。这些工具覆盖不同场景需求,从快速取数到深度定制,从云端部署到本地隐私保护。通过对比核心功能、适用场景和部署方式,企业可根据自身需求选择合适工具,推动ChatBI落地,提升数据驱动决策效率。原创 2025-09-30 18:49:24 · 610 阅读 · 0 评论 -
ChatBI告别“NL2SQL依赖症”!从准确率50%到90%,3大技术路线+4个企业案例拆解核心玩法
摘要: ChatBI通过自然语言交互实现数据民主化,其核心是“语义理解+数据执行+知识沉淀”的全链路能力,而非单一的NL2SQL技术。行业采用三大技术路线提升准确率:专有知识库(提升30%)、指标标签语义层(准确率85%)、JSON中间层(多轮对话提升25%)。数据执行方案包括NL2SQL、NL2API等,需结合场景选择。企业落地需解决四大痛点:跨表查询准确率低(引入拓扑图)、模糊查询(用户干预机制)、响应慢(预计算缓存)、多轮对话(上下文池)。Spring AI Alibaba提供轻量级集成方案,助力企业原创 2025-09-30 18:40:18 · 776 阅读 · 0 评论 -
DeepSeek-R1大模型微调从0到1落地指南:24小时搞定数据+训练+部署
摘要: 本文节选自《GPT多模态大模型与AI Agent智能体》,介绍DeepSeek-R1大模型微调落地的全流程指南。重点涵盖五大模块:环境准备(硬件需求、虚拟环境搭建)、数据工程(JSONL格式规范、预处理与质量检查)、微调实现(全参数/LoRA模式选择、训练参数配置)、评估部署及问题排查。通过标准化流程,开发者可在24小时内完成微调,提升垂直领域任务准确率15%-30%。文中提供已验证的代码片段与参数建议,帮助规避显存不足、数据质量差等常见问题,实现高效模型定制化。原创 2025-09-29 18:27:56 · 2291 阅读 · 0 评论 -
DeepSeek大模型训练微调实战指南:从数据清洗到部署落地降本90%,3大行业案例+核心代码直接用
摘要: DeepSeek微调技术通过预训练模型适配垂直场景,显著降低90%计算资源消耗,保留模型泛化能力。核心流程包括数据清洗(遵循3C原则)、模型选择(全参数/LoRA/Prefix-Tuning)和训练优化(动态学习率/梯度累积)。针对灾难性遗忘和长文本处理,采用混合训练与滑动窗口注意力解决。部署阶段通过量化和Triton动态批处理提升效率。医疗、电商等案例验证其价值,未来将向轻量化、自动化发展,进一步降低技术门槛。 (字数:149)原创 2025-09-29 18:22:01 · 995 阅读 · 0 评论 -
AI Agent智能体如何突破“听懂却做不好”困局?多模态技术打通全链路
AI Agent 要实现从 “理解意图” 到 “精准执行” 的跨越,核心突破口在于多模态技术。它将自然语言理解(NLP)、视觉识别(OCR / 目标检测)、界面感知(GUI 交互)深度融合,解决了单模态系统 “看不懂界面、摸不准操作、扛不住变化” 的痛点,最终让 “一句话触发全流程自动化” 成为现实。本文结合九科信息 bit-Agent 的实践案例,从技术原理、核心模块、融合架构到落地应用,全面拆解多模态技术如何支撑 AI Agent“听懂、看清、会做” 的三位一体能力。原创 2025-09-28 20:22:37 · 1007 阅读 · 0 评论 -
万字拆解LLM-based AI Agent智能体:从技术底层到落地实战,这才是通往AGI的关键路径
文章摘要: 本文探讨了基于大语言模型(LLM)的AI Agent智能体的技术架构与落地实践,指出其是通往通用人工智能(AGI)的关键路径。AI Agent通过“大模型+插件+执行流程”实现自主决策,具备感知、推理与行动能力。技术演进经历了符号逻辑、响应式、强化学习到LLM驱动的四个阶段,LLM因其自主性、反应性、主动性及社会能力成为Agent核心。构建上,AI Agent分为大脑(决策)、感知(多模态输入)、行动(工具调用与具身交互)三大模块。实践场景包括单个Agent任务执行、多Agent协作及人机交互,原创 2025-09-28 20:15:41 · 948 阅读 · 0 评论 -
告别AI“幻觉”!大模型RAG(检索增强生成)深度拆解:从原理到落地,让AI回答精准度翻倍
文章摘要: RAG(检索增强生成)技术通过结合外部知识检索与大模型生成,有效解决AI大模型的“知识过时”“专业不足”和“幻觉”问题。其核心流程分为三步:1)数据准备,构建高质量、结构化的知识库;2)信息检索,利用向量匹配精准定位相关材料;3)答案生成,通过优化提示工程确保回答基于检索内容。四大优化策略(知识源筛选、检索算法调优、提示工程改进、多轮对话设计)可进一步提升RAG的准确性与实用性,使其成为企业级AI落地的关键技术。原创 2025-09-27 19:53:21 · 770 阅读 · 0 评论 -
3000字读懂AI核心技术:从大模型微调、RAG进化到智能体设计,一文掌握行业前沿
摘要: 本文系统解析了AI核心技术的最新进展,涵盖大模型架构、微调技术、RAG演进与智能体设计。Transformer与MoE架构协同支撑大模型高效扩容,LoRA等5种微调技术实现轻量化适配;Agentic RAG突破传统检索-生成管道的局限,通过动态决策提升准确性;智能体设计模式(如反思模式、工具增强)赋予AI自主任务处理能力。文章以技术原理结合应用场景,为开发者提供从模型优化到系统设计的完整知识框架。原创 2025-09-27 19:17:40 · 752 阅读 · 0 评论 -
GitHub 10.3k星炸场!JoyAgent-JDGenie:业界首个开源高完成度轻量化通用多智能体产品,开箱即用破局AI落地最后一公里
京东开源JoyAgent-JDGenie,以10.3k星成绩成为业界首个高完成度轻量化通用多智能体产品。该产品突破"框架依赖"局限,提供端到端完整解决方案,支持开箱即用的多智能体交互、结构化/非结构化知识处理,并在GAIA榜单跻身全球第一梯队(准确率75.15%)。其特色包括:轻量化架构支持独立部署、DAG高并发引擎、可插拔设计(支持自定义工具扩展)、全链路流式输出等。提供Docker和手动两种部署方式,5分钟即可启动企业级智能体应用。目前已有30余名开发者参与共建,为AI落地最后一公里原创 2025-09-26 18:29:37 · 644 阅读 · 0 评论 -
GitHub万星爆火!京东开源 “AI 全家桶”,行业首个 100% 开源企业级智能体 JoyAgent 领衔,智能体生态战开打
京东开源"AI全家桶",推出行业首个100%开源企业级智能体平台JoyAgent 3.0,打响智能体生态争夺战。此次开源覆盖智能体平台、多智能体协作框架OxyGent和医疗大模型京医千询2.0,均源于京东真实业务场景锤炼。技术亮点包括自然语言数据查询、模块化智能体开发、医疗可信推理等,已在电商、医疗、金融等领域落地应用。京东计划通过开源构建AI生态标准,未来三年打造万亿规模人工智能生态。目前JoyAgent在GitHub星标已突破10.1k,开源行动显著降低AI应用门槛,为开发者提供企业原创 2025-09-26 18:15:32 · 1000 阅读 · 0 评论 -
2025 AI Agent元年:撬动万亿市场,重构企业生产力的核心变量
摘要: 2025年被视为“AI Agent元年”,AI Agent作为生成式AI的高级形态,通过自主调用工具执行复杂任务,重构企业生产力。其技术架构整合大模型、工具及基础设施,具备自主性、规划与记忆能力等核心特征,已在办公自动化、客户服务、工业智能化、医疗辅助四大场景落地。全球市场高速增长,中国预计2027年规模超5000亿元。竞争格局呈现“上游集中、下游分散”,国际巨头领跑底层技术,国内厂商深耕场景应用。未来趋势将向多智能体协作生态演进,政策推动下,AI Agent正成为撬动万亿市场的核心变量,重塑人机协原创 2025-09-25 18:27:06 · 1549 阅读 · 0 评论 -
大模型驱动下 AI Agent 的技术架构与 AGI 演进研究
文章摘要 AI Agent(智能体)正成为大模型时代的下一个“革命级主角”,通过自主性、规划能力和工具调用实现从“被动响应”到“主动执行”的跨越。其核心架构由三大组件构成:规划(任务拆解与反思优化)、记忆(短期与长期信息存储)、工具使用(API调用扩展能力边界)。GPT-4的突破进一步推动Agent落地,如科研助手ChemCrow和多Agent社会模拟“AI小镇”。然而,AI Agent仍面临上下文限制、规划鲁棒性等技术挑战,需在可靠性、成本与伦理方面持续优化,未来或成为通向AGI的关键路径。 (字数:15原创 2025-09-25 18:21:44 · 841 阅读 · 0 评论 -
深度拆解 DeepSeek-V3/R1 推理架构!从核心组件到工作流,揭秘高效推理的底层逻辑
本文深度解析了DeepSeek-V3/R1推理系统的架构设计与工作流程。该系统通过API服务器、负载均衡器(预填充/解码/专家并行)、预填充服务、解码服务及外部键值缓存等核心组件的协同运作,实现了高效推理。重点阐述了负载均衡器如何根据实例负载动态分配请求,以及专家并行机制如何优化GPU计算资源利用率。文章还详细介绍了从请求接收、负载均衡、专家分配到结果缓存的全流程,展现了系统在吞吐量、响应速度和可扩展性方面的技术优势。该内容节选自陈敬雷编著的《GPT多模态大模型与AI Agent智能体》一书。原创 2025-09-24 21:27:08 · 738 阅读 · 0 评论 -
DeepSeek 知识蒸馏:让小模型拥有大模型 “超能力”,AI 落地成本直降 90% 的核心秘密
对于经过蒸馏处理后的模型,在后续操作中仅采用了监督微调的方式,并未将强化学习阶段纳入其中。从以往的经验和相关研究可以知晓,若加入强化学习,能够在很大程度上进一步提升模型的性能。但此次研究的核心目的在于重点展示蒸馏技术本身的有效性,因此将强化学习阶段的深入探索留给更广泛的研究群体,以便众多研究人员能从不同视角深入挖掘与拓展,从而有力地推动整个领域的发展。通过这样的安排,清晰直观地呈现出蒸馏技术在赋予小模型推理能力方面的显著成效,为后续更为深入的研究与应用筑牢根基。原创 2025-09-24 18:33:13 · 919 阅读 · 0 评论 -
基于vLLM本地部署企业级DeepSeek大模型
本文介绍了基于vLLM本地部署企业级DeepSeek大模型的方法。vLLM是一款专为大型语言模型设计的高效推理工具库,具有高性能推理能力、灵活兼容性和便捷开发体验。其技术架构包括调度器、模型执行器、内存管理器等核心组件,支持多种并行计算策略和先进的内存管理机制。文章详细说明了vLLM的安装步骤,包括系统要求、虚拟环境创建、CUDA配置等,并提供了验证安装成功的方法。通过vLLM部署DeepSeek模型,企业可以获得强大的AI能力,提升数字化转型中的竞争力。原创 2025-09-23 18:06:46 · 969 阅读 · 0 评论 -
Ollama本地部署DeepSeek大模型
本文介绍了如何利用Ollama开源框架在Windows和Linux平台上本地部署DeepSeek大模型。Ollama简化了大型语言模型的本地部署与管理,支持多种模型格式和硬件加速。具体步骤包括:下载安装Ollama,配置环境变量,选择合适的DeepSeek模型版本进行部署,并通过Python代码调用模型接口。文章还提供了Linux平台的一键安装命令和Windows的详细安装流程,帮助开发者高效利用DeepSeek的自然语言处理能力。更多技术细节可参考配套教材和视频课程。原创 2025-09-23 18:02:55 · 1563 阅读 · 0 评论 -
DeepSeek-R1 靠冷启动强化学习 “开挂”,推理 + 通用能力全面飙升,还解决了语言混杂难题!
DeepSeek-R1-Zero取得的成果令人看到了希望,这也引发了两个很自然的问题。其一,通过引入少量高质量数据作为冷启动手段,能不能进一步提升推理性能,或者加快模型收敛的速度?其二,要怎样训练出一个对用户友好的模型,使其不但能生成清晰、连贯的思维链,还具备强大的通用能力?为解决这些问题,DeepSeek团队专门设计了一套训练DeepSeek-R1的流程,该流程涵盖四个阶段,具体内容如下。原创 2025-09-22 18:27:16 · 1272 阅读 · 0 评论 -
DeepSeek-R1-Zero 靠无监督强化学习 “封神”,推理性能狂飙还自带 “顿悟时刻”!
为了降低强化学习的训练成本,DeepSeek-R1也采用了GRPO这一方法。与传统的强化学习方法不同,GRPO摒弃了那种通常与策略模型大小相同的价值评估模型。而是采用了一种全新的思路,即从组得分中估计基线。具体的操作过程是这样的:对于每一个问题q,GRPO会从旧策略中采样出一组输出。然后,通过对特定目标的最大化来实现对策略模型的优化。这种优化方式能够使模型在不依赖大量监督数据的情况下,依然能够有效地学习和改进,从而提升自身的推理能力。在DeepSeek-R1-Zero的训练过程中原创 2025-09-22 18:22:43 · 827 阅读 · 0 评论 -
揭秘 DeepSeek强化学习!双奖励模型 + GRPO 技术,如何让模型性能飙升?
在深度学习领域,强化学习作为提升模型性能和适应性的关键技术手段,对于DeepSeek-V3模型的优化起着至关重要的作用。为了使模型能够在复杂多变的任务中展现出卓越的表现,在强化学习过程中精心设计并采用了一系列有效的策略和方法。其中,奖励模型的构建以及组相对策略优化技术的应用,是提升模型学习效果和性能的重要组成部分。下面将详细介绍DeepSeek-V3在强化学习中所采用的奖励模型和组相对策略优化的具体内容。原创 2025-09-21 21:56:26 · 929 阅读 · 0 评论 -
DeepSeek后训练:监督微调策略,开启模型优化新时代
《DeepSeek-V3后训练:监督微调策略优化》介绍了DeepSeek-V3模型在后训练阶段的关键优化技术。文章详细阐述了监督微调(SFT)策略,包括针对推理数据(数学、代码等)和非推理数据(创意写作等)的不同处理方法。通过结合专家模型生成数据、强化学习优化以及人工标注验证,模型在150万实例数据集上实现了性能提升。两轮微调采用余弦退火学习率调度和样本掩码策略,有效提升了模型任务表现。本文节选自陈敬雷新书《GPT多模态大模型与AI Agent智能体》,配套视频课程可进一步学习相关技术。原创 2025-09-21 21:53:33 · 578 阅读 · 0 评论 -
DeepSeek大模型MLA多头潜在注意力机制的创新设计
DeepSeek-V3大模型通过创新的多头潜在注意力机制(MLA)和专家混合架构(DeepSeekMoE)实现了性能突破。MLA采用低秩联合压缩技术,显著减少键值缓存需求,提升推理效率;DeepSeekMoE通过细粒度专家划分和无辅助损失负载均衡策略优化计算资源分配。模型还引入序列级辅助损失和受限路由机制,在保持负载均衡的同时降低训练成本。这些创新使DeepSeek-V3在长序列处理、内存利用和计算效率方面展现显著优势,为大语言模型发展提供了新思路。原创 2025-09-20 20:26:46 · 798 阅读 · 0 评论 -
DeepSeek大模型混合专家模型,DeepSeekMoE 重构 MoE 训练逻辑
DeepSeek大模型通过创新技术重构MoE训练逻辑,提出动态偏差项和无Token丢弃策略。其核心技术包括DeepSeek-R1强化推理能力、原生稀疏注意力(NSA)优化长文本处理,以及DeepSeek-V3架构整合MLA和DeepSeekMoE。其中,DeepSeekMoE采用细粒度专家划分和共享专家机制,通过动态调整偏差项实现无辅助损失负载均衡,配合序列级辅助损失和节点限制路由,有效提升训练效率。模型在15.8万亿Token上完成高效训练,并在推理任务中表现出色,应用场景覆盖智能客服、代码生成等多个领域原创 2025-09-20 20:21:12 · 1284 阅读 · 0 评论 -
揭秘 DeepSeek-V3大模型:MLA 如何破解传统注意力 “内存炸弹”,大模型推理效率飙升!
DeepSeek-V3大模型创新采用MLA(多头潜在注意力)和DeepSeekMoE架构,突破传统Transformer局限。MLA通过低秩联合压缩键值技术,将KV缓存转化为潜在向量,在保持性能的同时显著降低内存占用和计算成本,推理效率提升40%。该机制包含键值压缩、查询压缩和注意力输出生成三个核心步骤,特别适合长序列处理。模型还引入无辅助损失的负载均衡策略优化DeepSeekMoE架构,实现计算资源的高效利用。这些创新使DeepSeek-V3在性能与成本控制方面达到新高度,为多模态大模型发展提供重要技术参原创 2025-09-19 22:40:15 · 1108 阅读 · 0 评论 -
开发者狂喜!SuperAGI 开源免费还能改:Transformer 架构 + 模块化设计,智能客服到自动驾驶决策都能做
SuperAGI是一个开源自主Agent框架,采用Transformer架构和模块化设计,支持开发者构建、管理和运行智能体。核心功能包括:提供图形化界面和操作控制台、支持多向量数据库连接、优化代币使用策略、自定义模型微调等。其应用场景涵盖智能客服、自动驾驶决策、财务预测等领域。SuperAGI提供本地部署和云平台两种使用方式,并开放Python SDK简化开发流程。项目已在GitHub和Gitee开源,支持社区协作开发。该框架通过容器化技术和工具箱市场,使智能体能够灵活扩展功能,适用于各类AI自动化任务。原创 2025-09-18 18:15:20 · 591 阅读 · 0 评论 -
AI 又进化了!BabyAGI:自己创任务、排优先级、存结果,3 步装完直接替你管活儿
BabyAGI是一个基于OpenAI技术的智能任务管理框架,具备任务自驱动、动态优先级调整和结果存储检索功能。其核心由任务生成、执行和优先级排序三大模块组成,通过OpenAI API实现任务自动化处理。优势包括高效自动化、动态优先排序和模块化设计,适合快速原型开发;劣势则体现在对外部服务的依赖性和定制化难度。安装部署仅需四步:克隆项目、安装依赖、配置环境变量和运行脚本。该技术为教育、研究和企业应用提供了创新的AI任务管理解决方案。原创 2025-09-18 18:08:42 · 830 阅读 · 0 评论 -
FastGPT 火了!零代码玩转 AI 客服,可视化工作流 + 多模型支持,非技术人员也能搭知识库
FastGPT是一款基于大模型的零代码AI客服系统,通过可视化工作流和向量搜索技术,让非技术人员也能快速搭建知识库。它支持多格式文档导入、自动数据预处理和问答对分割,提供专属AI客服、可视化界面、工作流编排和API集成等功能。FastGPT开源且支持多种模型,适合业务人员快速部署,但存在流程设计复杂、不支持循环等局限。相比侧重多Agent互动的AutoGen,FastGPT更注重易用性和业务场景集成。文章节选自陈敬雷新书《GPT多模态大模型与AI Agent智能体》。原创 2025-09-17 22:45:29 · 743 阅读 · 0 评论 -
从单 Agent 到多智能体协同:微软 AutoGen 框架深度拆解,Studio 工具助你快速落地 AI 应用
本文介绍了微软推出的AutoGen框架,这是一个支持多智能体协同工作的编程工具,旨在简化大模型应用开发。AutoGen通过模拟人类分工协作模式,突破单智能体的限制,提高任务处理效率,适用于复杂开发环境。框架核心功能包括创建定制化Agent、管理多Agent对话环境以及群聊管理,并提供了可视化工具AutoGen Studio以简化应用开发。文章还通过代码示例展示了单Agent对话、双Agent交互和群聊管理等基础用法,展现了该框架在构建复杂AI应用中的灵活性与高效性。AutoGen为开发者提供了强大的多智能体原创 2025-09-17 22:40:32 · 892 阅读 · 0 评论 -
从单智能体到人类介入!MetaGPT 完整教程:原理、代码实战、开源模型集成全攻略
MetaGPT是一个创新的多智能体框架,通过标准作业程序(SOP)协调大模型驱动的智能体协作,模拟虚拟软件团队完成从需求分析到代码实现的完整开发流程。该框架定义了产品经理、架构师、工程师等角色,每个角色配备特定技能和任务处理能力,通过观察输入、执行动作、广播消息等机制实现协同工作。MetaGPT支持单智能体定制,允许开发者定义特定行为的智能体,如代码生成助手SimpleCoder。其核心优势在于将传统软件开发流程自动化,只需输入需求即可输出完整开发成果,显著提升开发效率和质量。该框架为AI驱动的软件开发提供原创 2025-09-16 21:30:03 · 1227 阅读 · 0 评论 -
AutoGPT 深度拆解:Agent 初始化、ReAct 框架、记忆模块… 看懂它,才算跟上 AI 自治时代
《AutoGPT深度解析:AI自治时代的核心技术》 摘要: AutoGPT作为开源AI项目,通过融合GPT-4与GPT-3.5技术实现任务自治,其核心架构包含四大模块: Agent初始化:定义AI身份与目标,构建任务执行基础; ReAct任务规划框架:结合推理与行动,通过"思考-行动-观察"循环实现复杂任务分解; 记忆管理:采用向量数据库存储历史信息,支持长短期记忆调用; 工具调用机制:整合搜索引擎、脚本执行等功能扩展AI能力边界。 该技术通过五阶段工作流(初始化提示→行动提案→执行→数原创 2025-09-16 21:22:12 · 809 阅读 · 0 评论 -
一文读懂 AI Agent!从 “自主决策” 到工具调用,揭秘未来AI智能体的核心原理
AI Agent智能体的核心原理与应用 AI Agent是一种能自主感知、决策和执行的智能实体,区别于依赖提示词的大模型,它通过目标驱动实现任务自动化。其核心技术包括: 任务规划:利用大模型的思维链(Chain of Thought)和思维树(Tree of Thought)分解复杂任务,结合自省机制(如ReAct框架)优化决策; 记忆系统:短期记忆受限于模型上下文窗口,长期记忆通过向量数据库实现海量信息存储与检索; 工具调用:集成外部API和插件(如HuggingGPT),扩展能力边界,完成数据查询、日程原创 2025-09-15 23:03:05 · 1819 阅读 · 0 评论 -
视频理解大突破!Video-LLaVA 与 LLaVA-NeXT-Video 双雄争霸,刷新多模态模型性能天花板
北京大学团队推出的Video-LLaVA与LLaVA-NeXT-Video在视频理解领域取得重大突破。Video-LLaVA通过"提前对齐"策略统一图像和视频特征处理,采用两阶段训练显著提升多模态理解能力,在多个视频问答基准测试中创下SOTA记录。LLaVA-NeXT-Video则基于LLaMA3等大模型架构,通过零样本学习和动态规划优化在视频任务中表现优异。两者分别以特征对齐和大模型继承为技术核心,共同推动视频理解技术的发展,为人机交互和多媒体处理提供了新范式。(149字)原创 2025-09-15 22:59:22 · 834 阅读 · 0 评论 -
从单图识别到多图对话,阿里多模态大模型 Qwen-VL 系列凭什么成为多模态 AI 新标杆?
阿里巴巴推出的通义千问多模态大模型Qwen-VL系列,包括Qwen-VL、Qwen-VL-Chat等版本,具备强大的图像识别、多语言对话、多图交互和细粒度理解能力。该系列在多项国际测评中表现优异,支持448分辨率输入,成为首个开源的中文开放域定位通用模型。文章详细介绍了模型推理和微调方法,包括代码示例和数据处理流程,展示了其在视觉语言任务中的灵活应用。Qwen-VL系列标志着中国在多模态AI领域的重要突破,与国际先进技术展开竞争。原创 2025-09-14 22:15:00 · 734 阅读 · 0 评论 -
解锁 DALL・E 3:文生图多模态大模型的无限可能
OpenAI推出的DALL·E 3是第三代文生图多模态大模型,相比前代在语义理解、图像质量和长文本处理等方面有显著提升。其技术架构分为图像描述生成和图像生成两大模块:前者结合CLIP图像编码器和GPT语言模型实现精准描述;后者通过变分自编码器压缩图像、T5文本编码和潜空间扩散等技术生成高质量图像。评估显示,DALL·E 3在CLIP分数、Drawbench复杂提示处理等指标上优于同类模型。文章还提供了Python调用DALL·E 3 API的代码示例,展示了其在创意设计、教育、娱乐等领域的应用潜力。该技术标原创 2025-09-14 22:10:58 · 1049 阅读 · 0 评论 -
多模态大模型LLaVA 家族放大招!LLaVA-Plus 化身多模态 Agent,工具自由 + 性能追平 GPT-4
LLaVA-Plus是LLaVA系列的最新升级版,作为多模态Agent实现了工具自由调用与性能突破。它通过智能规划和整合视觉生成、交互、理解等工具库,完成复杂任务,性能接近GPT-4。相比前代,LLaVA-Plus具备更强的工具选择与规划能力,支持"全工具"和"飞速"两种训练模式,7B规模模型即可高效运行。实验显示其在OCR、空间感知等任务上有显著提升,标志着AI正从Chat模式向Agent方向发展。该技术细节详见清华大学出版社新书《GPT多模态大模型与AI Agen原创 2025-09-13 22:05:00 · 694 阅读 · 0 评论