注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
自然语言处理系列八
规则分词
规则分词是基于字典、词库匹配的分词方法(机械分词法),其实现的主要思想是:切分语句时,将语句特定长的字符串与字典进行匹配,匹配成功就进行切分。按照匹配的方式可分为:正向最大匹配分词、逆向最大匹配分词和双向最大匹配分词。这种方法按照一定策略将待分析的汉字串与一个“充分大的”机器词典中的词条进行匹配,若在词典中找到某个字符串,则匹配成功。识别出一个词,根据扫描方向的不同分为正向匹配和逆向匹配。根据不同长度优先匹配的情况,分为最大(最长)匹配和最小(最短)匹配。根据与词性标注过程是否相结合,又可以分为单纯分词方法和分词与标注相结合的一体化方法。
正向最大匹配法
正向最大匹配分词(Forward maximum matching segmentation)通常简称为MM法。其基本思想为:假定分词词典中的最长词有i个汉字字符,则用被处理文档的当前字串中的前i个字作为匹配字段,查找字典。若字典中存在这样的一个i字词,则匹配成功,匹配字段被作为一个词切分出来。如果词典中找不到这样的一个i字词,则匹配失败,将匹配字段中的最后一个字去掉,对剩下的字串重新进行匹配处理…… 如此进行下去,直到匹配成功,即切分出一个词或剩余字串的长度为零为止。这样就完成了一轮匹配,然后取下一个i字字串进行匹配处理,直到文档被扫描完为止。
其算法描述如下:
(1)初始化当前位置计数器,置为0;
(2)从当前计数器开始,取前2i个字符作为匹配字段,直到文档结束;
(3)如果匹配字段长度不为0,则查找词典中与之等长的作匹配处理。
如果匹配成功,则:
a)把这个匹配字段作为一个词切分出来,放入分词统计表中;
b)把当前位置计数器的值加上匹配字段的长度;
c)跳转到步骤2);
否则
a) 如果匹配字段的最后一个字符为汉字字符,
则
①把匹配字段的最后一个字去掉;
②匹配字段长度减2;
否则
①把匹配字段的最后一个字节去掉;
②匹配字段长度减1;
b)跳转至步骤3);
否则
a)如果匹配字段的最后一个字符为汉字字符,
则
当前位置计数器的值加2;
否则当前位置计数器的值加1;
b)跳转到步骤2)。
下面使用HanLP工具包给大家代码示例:
正向最长匹配简单来说就是从前往后进行取词,假设此时词典中最长单词包含5个汉字,对"就读北京大学"进行分词,正向最长匹配的基本流程:
第一轮
正向从前往后选取5个汉字。“就读北京大”,词典中没有对应的单词,匹配失败;
减少一个汉字。“就读北京”,词典中没有对应的单词,匹配失败;
减少一个汉字。“就读北”,词典中没有对应的单词,匹配失败;
减少一个汉字。“就读”,词典中有对应的单词,匹配成功;
扫描终止,输出第1个单词"就读",去除第1个单词开始第二轮扫描。
第二轮
去除"就读"之后,依然正向选择5个汉字,不过由于我们分词句子比较短,不足5个汉字,所以直接对剩下的4个汉字进行匹配。“北京大学”,词典中有对应的单词,匹配成功;
至此,通过正向最大匹配对"就读北京大学"的匹配结果为:“就读 / 北京大学”。不过书中实现的正向最长匹配没有考虑设置最长匹配的起始长度,而是以正向逐渐增加汉字的方式进行匹配,如果此时匹配成功还需要进行下一次匹配,保留匹配成功且长度最长的单词作为最终的分词结果。
不过为了提升效率在实际使用中倾向于设置最长匹配的起始长度,如果想更进一步提升分词的速度,可以将词典按照不同汉字长度进行划分,每次匹配的时候搜索相对应汉字个数的词典。虽然代码和讲解有所不同,但是本质和结果都是一样的,越长单词的优先级越高,这里注意一下即可。
from utility import load_dictionary # 导入加载词典函数
def forward_segment(text, dic):
"""
:param text: 待分词的中文文本
:param dic: 词典
:return: 分词结果
"""
word_list = []
i = 0
while i < len(text):
longest_word = text[i]
for j in range(i + 1, len(text) + 1):
word = text[i:j]
if word in dic:
# 优先输出单词长度更长的单词
if len(word) > len(longest_word):
longest_word = word
word_list.append(longest_word)
# 提出匹配成功的单词,分词剩余的文本
i += len(longest_word)
return word_list
if __name__ == '__main__':
# 加载词典
dic = load_dictionary()
print(forward_segment('就读北京大学', dic))
代码运行输出结果:
['就读', '北京大学']
使用上面的代码对"就读北京大学"进行分词,正向最大匹配的具体代码流程如图所示:
使用正向最长匹配对"就读北京大学"的分词效果很好,但是如果对"研究生命起源"进行分词的话,正向最大匹配分词的结果为"研究生 / 命 / 起源",产生这种误差的原因在于,正向最长匹配中"研究生"的优先级要大于"研究"("研究生"长度长)。正向匹配出的"研究生"优先级要高,很自然的想法从后往前进行匹配,这样就可以先将"生命"划分出来,避免从前到后先把"研究生"划分出来的错误。
接下来的自然语言处理系列详细讲解逆向最大匹配法的原理,并用HanLP举例子给大家代码演示。
总结
此文章有对应的配套视频,其它更多精彩文章请大家下载充电了么app,可获取千万免费好课和文章,配套新书教材请看陈敬雷新书:《分布式机器学习实战》(人工智能科学与技术丛书)
【新书介绍】
《分布式机器学习实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目
【新书介绍视频】
分布式机器学习实战(人工智能科学与技术丛书)新书【陈敬雷】
视频特色:重点对新书进行介绍,最新前沿技术热点剖析,技术职业规划建议!听完此课你对人工智能领域将有一个崭新的技术视野!职业发展也将有更加清晰的认识!
【精品课程】
《分布式机器学习实战》大数据人工智能AI专家级精品课程
【免费体验视频】:
人工智能百万年薪成长路线/从Python到最新热点技术
视频特色: 本系列专家级精品课有对应的配套书籍《分布式机器学习实战》,精品课和书籍可以互补式学习,彼此相互补充,大大提高了学习效率。本系列课和书籍是以分布式机器学习为主线,并对其依赖的大数据技术做了详细介绍,之后对目前主流的分布式机器学习框架和算法进行重点讲解,本系列课和书籍侧重实战,最后讲几个工业级的系统实战项目给大家。 课程核心内容有互联网公司大数据和人工智能那些事、大数据算法系统架构、大数据基础、Python编程、Java编程、Scala编程、Docker容器、Mahout分布式机器学习平台、Spark分布式机器学习平台、分布式深度学习框架和神经网络算法、自然语言处理算法、工业级完整系统实战(推荐算法系统实战、人脸识别实战、对话机器人实战)、就业/面试技巧/职业生涯规划/职业晋升指导等内容。
【充电了么公司介绍】
充电了么App是专注上班族职业培训充电学习的在线教育平台。
专注工作职业技能提升和学习,提高工作效率,带来经济效益!今天你充电了么?
充电了么官网
http://www.chongdianleme.com/
充电了么App官网下载地址
https://a.app.qq.com/o/simple.jsp?pkgname=com.charged.app
功能特色如下:
【全行业职位】 - 专注职场上班族职业技能提升
覆盖所有行业和职位,不管你是上班族,高管,还是创业都有你要学习的视频和文章。其中大数据智能AI、区块链、深度学习是互联网一线工业级的实战经验。
除了专业技能学习,还有通用职场技能,比如企业管理、股权激励和设计、职业生涯规划、社交礼仪、沟通技巧、演讲技巧、开会技巧、发邮件技巧、工作压力如何放松、人脉关系等等,全方位提高你的专业水平和整体素质。
【牛人课堂】 - 学习牛人的工作经验
1.智能个性化引擎:
海量视频课程,覆盖所有行业、所有职位,通过不同行业职位的技能词偏好挖掘分析,智能匹配你目前职位最感兴趣的技能学习课程。
2.听课全网搜索
输入关键词搜索海量视频课程,应有尽有,总有适合你的课程。
3.听课播放详情
视频播放详情,除了播放当前视频,更有相关视频课程和文章阅读,对某个技能知识点强化,让你轻松成为某个领域的资深专家。
【精品阅读】 - 技能文章兴趣阅读
1.个性化阅读引擎:
千万级文章阅读,覆盖所有行业、所有职位,通过不同行业职位的技能词偏好挖掘分析,智能匹配你目前职位最感兴趣的技能学习文章。
2.阅读全网搜索
输入关键词搜索海量文章阅读,应有尽有,总有你感兴趣的技能学习文章。
【机器人老师】 - 个人提升趣味学习
基于搜索引擎和智能深度学习训练,为您打造更懂你的机器人老师,用自然语言和机器人老师聊天学习,寓教于乐,高效学习,快乐人生。
【精短课程】 - 高效学习知识
海量精短牛人课程,满足你的时间碎片化学习,快速提高某个技能知识点。