注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
自然语言处理系列六十
分布式深度学习实战》主流深度学习开源平台
深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在人脸识别、语音识别、对话机器人、搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。
深度学习是一种基于对数据进行表证学习的机器学习方法,近些年不断发展并广受欢迎。同时也有很多的开源框架和开源库,有16种GitHub中最受欢迎的深度学习开源平台和开源库给大家一一介绍下:
TensorFlow
TensorFlow最初由谷歌的Machine Intelligence research organization 中Google Brain Team的研究人员和工程师开发的。这个框架旨在方便研究人员对机器学习的研究,并简化从研究模型到实际生产的迁移的过程。
链接:
https://github.com/tensorflow/tensorflow
Keras
Keras是用Python编写的高级神经网络的API,能够和TensorFlow,CNTK或Theano配合使用。
链接:
https://github.com/keras-team/keras
Caffe
Caffe是一个重在表达性、速度和模块化的深度学习框架,它由Berkeley Vision and