acwing3417. 砝码称重

文章介绍了两种解决砝码称重问题的方法,一是深度优先搜索(DFS),通过遍历所有砝码放置的可能性来找出所有可能的重量;二是动态规划(DP),利用状态转移方程优化求解,提高效率。两种方法都在给定的数据范围内给出了解决方案。
摘要由CSDN通过智能技术生成

acwing3417. 砝码称重

算法 1: DFS

/**
 * 数据范围
对于 50%的评测用例,1≤N≤15.
对于所有评测用例,1≤N≤100,N 个砝码总重不超过 1e5.
*/
/*
算法 1: DFS
思路 : 对于每个砝码,有放在左边,放在右边,和不放三种选择,使用深搜来遍历所有可能情况,并记录出现过的重量
时间复杂度 : O(N^3)
空间复杂度 : O(N)
*/
#include <iostream>
#include <set>
using namespace std;

const int N = 110;
int n ;
int w[N];
set<int> st;

void dfs(int u ,int s)
{
    if(u == n)
    {
        if(s>0)st.insert(s);
        return ;
    }
    dfs(u+1 , s+w[u]);
    dfs(u+1 , s-w[u]);
    dfs(u+1 , s);
}

int main()
{
    cin >> n;
    for(int i = 0 ;i < n ;i ++)cin >> w[i];
    dfs(0 , 0);//遍历到第u个砝码,总重量为多少
    cout<<st.size()<<endl;
    return 0;
}

算法2 : DP

本题是一个典型的背包问题,我们可以用动态规划来解决。状态转移方程为 f [ i ] [ j ] f[i][j] f[i][j] 表示前 i i i个砝码能否凑出重量 j j j,如果能够凑出,则 f [ i ] [ j ] = t r u e f[i][j]=true f[i][j]=true,否则 f [ i ] [ j ] = f a l s e f[i][j]=false f[i][j]=false

对于第 i i i个砝码,它可以选择放在天平左边、右边或者不放,因此有以下三种情况:

不放第 i i i 个砝码,则 f [ i ] [ j ] = f [ i − 1 ] [ j ] ; f[i][j]=f[i-1][j]; f[i][j]=f[i1][j]
将第 i i i 个砝码放在天平左边,则 f [ i ] [ j ] = f [ i − 1 ] [ j − W [ i ] ] ; f[i][j]=f[i-1][j-W[i]]; f[i][j]=f[i1][jW[i]]
将第 i i i 个砝码放在天平右边,则 f [ i ] [ j ] = f [ i − 1 ] [ j + W [ i ] ] f[i][j]=f[i-1][j+W[i]] f[i][j]=f[i1][j+W[i]]
综合上述三种情况,我们可以得到状态转移方程:
f [ i ] [ j ] = { f [ i − 1 ] [ j ] , f [ i − 1 ] [ j ] or  f [ i − 1 ] [ j − W i ] or  f [ i − 1 ] [ j + W i ] f[i][j]= \begin{cases} f[i-1][j], \\ f[i-1][j] \text{or}\ f[i-1][j-W_i] \text{or}\ f[i-1][j+W_i] \end{cases} f[i][j]={f[i1][j],f[i1][j]or f[i1][jWi]or f[i1][j+Wi]

最终答案即为有多少个 f [ N ] [ j ] f[N][j] f[N][j] 的值为 true。

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 110, M = 200010, B = M / 2;
/*
[-100000,100000]=>200010
*/

int n, m;
int w[N];
bool f[N][M];

int main()
{
    scanf("%d", &n);
    for (int i = 1; i <= n; i ++ ) scanf("%d", &w[i]), m += w[i];

    f[0][B] = true;
    for (int i = 1; i <= n; i ++ )
        for (int j = -m; j <= m; j ++ )
        {
        //状态转移方程:是否可以由"右状态"转移到"左状态"
            f[i][j + B] = f[i - 1][j + B];
            if (j - w[i] >= -m) f[i][j + B] |= f[i - 1][ j - w[i] + B ];//如果存在j - w[i] + B这样的重量,那么就可以从j - w[i] + B这个状态转移到j + B这个状态
            if (j + w[i] <= m)  f[i][j + B] |= f[i - 1][ j + w[i] + B ];
        }

    int res = 0;
    for (int j = 1; j <= m; j ++ )
        if (f[n][j + B])
            res ++ ;
    printf("%d\n", res);
    return 0;
}




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

踏过山河,踏过海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值