
数组的基本组成
数组定义格式
数组:数组(array)是一种用于存储多个相同类型数据的存储模型
格式:数据类型 [ ] 变量名或者 数据类型 变量名[ ]
数组初始化
所谓初始化:就是为数组中的数组元素分配内存空间,并为每个数组元素赋值
动态初始化:初始化时只指定数组长度,由系统为数组分配初始值
静态初始化:初始化时指定每个数组元素的初始值,由系统决定数组长度
数组元素访问
数组变量访问方式
格式:数组名
数组内部保存的数据的访问方式
格式:数组名[索引]
索引:索引是数组中数据的编号方式
作用:索引用于访问数组中的数据使用,数组名[索引]等同于变量名,是一种特殊的变量名
数组操作的两个常见小问题
索引越界:访问了数组中不存在的索引对应的元素,造成索引越界问题
空指针异常:访问的数组已经不再指向堆内存的数据,造成空指针异常
数组中常用的快速排序,选择排序,冒泡排序
快速排序
快速排序
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
//快速排序 左右指针法
void QuickSort(int* arr, int begin, int end)
{
//只有一个数或区间不存在
if (begin >= end)
return;
int left = begin;
int right = end;
//选左边为key
int keyi = begin;
while (begin < end)
{
//右边选小 等号防止和key值相等 防止顺序begin和end越界
while (arr[end] >= arr[keyi] && begin < end)
{
--end;
}
//左边选大
while (arr[begin] <= arr[keyi] && begin < end)
{
++begin;
}
//小的换到右边,大的换到左边
swap(&arr[begin], &arr[end]);
}
swap(&arr[keyi], &arr[end]);
keyi = end;
//[left,keyi-1]keyi[keyi+1,right]
QuickSort(arr, left, keyi - 1);
QuickSort(arr,keyi + 1,right);
}
时间复杂度:最坏情况:O(N^2)
最好情况:O(N^2)
选择排序
1.首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
2.再从剩余未排序元素中继续寻找最小(大)元素,然后放到未排序序列的起始位置。
3.重复第二步,直到所有元素均排序完毕。
//选择排序
void swap(int* a, int* b)
{
int tem = *a;
*a = *b;
*b = tem;
}
void SelectSort(int* arr, int n)
{
//保存参与单趟排序的第一个数和最后一个数的下标
int begin = 0, end = n - 1;
while (begin < end)
{
//保存最大值的下标
int maxi = begin;
//保存最小值的下标
int mini = begin;
//找出最大值和最小值的下标
for (int i = begin; i <= end; ++i)
{
if (arr[i] < arr[mini])
{
mini = i;
}
if (arr[i] > arr[maxi])
{
maxi = i;
}
}
//最小值放在序列开头
swap(&arr[mini], &arr[begin]);
//防止最大的数在begin位置被换走
if (begin == maxi)
{
maxi = mini;
}
//最大值放在序列结尾
swap(&arr[maxi], &arr[end]);
++begin;
--end;
}
}
时间复杂度:最坏情况:O(N^2)
最好情况:O(N^2)
空间复杂度:O(1)
冒泡排序
1.比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2.每趟从第一对相邻元素开始,对每一对相邻元素作同样的工作,直到最后一对。
3.针对所有的元素重复以上的步骤,除了已排序过的元素(每趟排序后的最后一个元素),直到没有任何一对数字需要比较。
//冒泡排序
void BubbleSort(int* arr, int n)
{
int end = n;
while (end)
{
int flag = 0;
for (int i = 1; i < end; ++i)
{
if (arr[i - 1] > arr[i])
{
int tem = arr[i];
arr[i] = arr[i - 1];
arr[i - 1] = tem;
flag = 1;
}
}
if (flag == 0)
{
break;
}
--end;
}
}
时间复杂度:最坏情况:O(N^2)
最好情况:O(N)
空间复杂度:O(1)