点菜
描述
uim拿到了uoi的镭牌后,立刻拉着其友小A到了一家餐馆,很低端的那种。uim指着墙上的价目表(太低级了没有菜单),说:“随便点”。不过uim由于买了一些书,口袋里只剩M元(M≤10000)。餐馆虽低端,但是菜品种类不少,有N种(N≤100),第i种卖ai元(ai ≤1000)。由于是很低端的餐馆,所以每种菜只有一份。小A奉行“不把钱吃光不罢休”,所以他点单一定刚好把uim身上所有钱花完。他想知道有多少种点菜方法。
输入
第一行是两个数字,表示N和M。
第二行起N个正数ai(可以有相同的数字,每个数字均在10001000以内)。
输出
一个正整数,表示点菜方案数,保证答案的范围在int之内。
#include<iostream>
using namespace std;
int main() {
int m, n;
cin >> n >> m;
int a[100] = { 0 };
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
int dp[1000] = { 0 };//用于表示剩余钱数为m时,可以点单的方式数
dp[0] = 1;//当钱数减为0时,点菜方式加1
for (int i = 1; i <= n; i++) {//通过循环覆盖所有菜品
for (int j = m; j >= a[i]; j--) {
dp[j] += dp[j - a[i]];
//剩余钱数为j时,可以点单的方式是加上j减本道菜的价格的点单方式数
}
}
cout << dp[m];
return 0;
}
合唱队形
描述
N位同学站成一排,音乐老师要请其中的(N-K)位同学出列,使得剩下的K位同学排成合唱队形。合唱队形是指这样的一种队形:设K位同学从左到右依次编号为1,2…,K,他们的身高分别为T1,T2,…,TK, 则他们的身高满足T1<...<Ti>Ti+1>…>TK(1<=i<=K)。已知所有N位同学的身高,计算最少需要几位同学出列,可以使得剩下的同学排成合唱队形。
输入
输入的第一行是一个整数N(2<=N<=100),表示同学的总数。 第二有N个整数,用空格分隔,第i个整数Ti(130<=Ti<=230)是第i位同学的身高(厘米)。
输出
输出最少需要几位同学出列。
#include<iostream>
#include<algorithm>
using namespace std;
int main() {
int n, ans = 0;
cin >> n;
int dp1[100] = { 0 }, dp2[100] = { 0 };
int a[100] = { 0 };
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {
if (a[i] > a[j]) {
dp1[i] = max(dp1[i], dp2[j] + 1);
}
}
}//dp1数组用于存放该数以前单调递增子段多长
for (int i = n - 1; i >= 0; i--) {
for (int j = n - 1; j >= 0; j--) {
if (a[i] > a[j]) {
dp2[i] = max(dp2[i], dp2[j] + 1);
}
}
}//dp2数组用于存放该数以后单调递减子段多长
for (int i = 0; i < n; i++) {
ans = max(ans, dp1[i] + dp2[i] + 1);
//以该数为中心,前递增子段加上后递减子段再加上该数本身
}//ans为组成的最长队形人数
cout << n - ans;//输出总人数减去最长队形人数,结果即为出列人数
return 0;
}
最大子段和
描述
给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为:Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-20,11,-4,13,-5,-2)时,最大子段和为20。
输入
输入n及n个数
输出
子段和的最大值
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
int n;
cin >> n;
int a[100] = { 0 };
for (int i = 1; i <= n; i++) {
cin >> a[i];
}
for (int i = 1; i <= n; i++) {
a[i] = max( a[i - 1] + a[i],a[i] );//比较该数本身和该数加上前一位数,留下较大值
}
int sum = 0;//用sum存放数组中的最大值,即子段和最大的子段的最后一位
for (int i = 0; i <= n; i++) {
if (a[i] > sum)
sum = a[i];
}
cout << sum;
return 0;
}