DDopS团队荣获本届挑战赛季军。该团队来自中山大学计算机学院Intelligent DDS 实验室。实验室主要方向为云计算、智能运维(AIOps)、软件定义网络、分布式软件资源管理与优化、eBPF 性能监控与优化等。
选题分析
基于对竞赛数据的洞察和对时代趋势的考量,我们尝试应对两大主要挑战:融合多模态数据以及结合大模型辅助分析,并将选题确定为:构建由大模型辅助的基于多模态数据融合的异常检测、根因诊断和故障报告生成系统。
小组拟定的赛题及解决方案达到以下运维能力,力求在解决热点问题的同时做出创新,且贴合赛题场景:
- 故障检测能力。从多模态数据源中检测系统是否存在异常
- 故障分类能力。在异常检测能力的基础上,分析出大致的异常类型。本次方案中能识别到的异常类型包括:耗时异常、流量异常(某事件触发次数增加)、业务逻辑异常(表现为断链)
- 根因定位能力。即在众多异常中,找到问题根本原因 故障报告生成能力。即根据分析结果生成故障报告和恢复建议
- 识别用户自然语言提问的能力。用户可以使用自然语言进行提问,模型会理解用户语义并分析出用户给出的任务
整体方案介绍
上图显示了我们所设计方案的整体架构,我们的方案主要包括以下四部分:
- LLM-based交互层:此模块用于理解用户的query instruct