平衡二叉树

13.8 平衡二叉树

如果给定一个数列{1, 2, 3, 4, 5, 6}, 我们生成二叉排序树的话,我们不难看出来,所有结点都是其父节点的右子节点,就像一条链表一样,那样,我们的查询效率将受到影响,甚至不如链表(因为我们要额外判断左子节点是否为空)

基本介绍:

  1. 平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree) 又被称为 AVL树,可以保证 查询效率
  2. 特点是:他是一棵空树或者它的做哟两个字数的高度的绝对值不超过1,并且左右两个字数都是一个平衡二叉树。平衡二叉树的常用使用方法又 红黑树、AVL、替罪羊树、Treap、伸展树等

当右子树的高度 - 左子树的高度 > 1 时,我们使用左旋转,意思是,让根节点变换成右子节点,然后,将原来右子节点的左子树,放到原来根节点的左子树的右子树上。 步骤如下:

左旋转:

  1. 创建一个新的结点 newNode,使这个新的结点的值等于当前根节点的值
  2. 把新节点的左子树设置成当前节点的左子树newNode.left = left
  3. 把新节点右子树设置成当前节点的右子树的左子树newNode.right = root.right.left
  4. 把当前当前结点值换成右子节点的值value = right.value
  5. 把当前结点的左子树设置成新节点right = right.right
  6. left = newLeft

右旋转:

  1. 创建一个新的结点newNode,另这个新的结点的值等于当前结点的值
  2. 把新节点的右节点设置成当前结点的右节点newNode.right = right
  3. 把新节点的左节点设置成当前节点的左节点的右节点newNode.left = left.right
  4. 将当前节点的值设置成左节点的值value = left.value
  5. 把当前节点的右子树设置成新节点right = newNode
  6. 把当前节点的左子树设置成左子树的左子树left = left.left
package avl;

public class AVLTreeDemo {
    public static void main(String[] args) {
        int[] arr = {4, 3, 6, 5, 7, 8};
        // 创建一个 ACLTree对象
        AVLTree avlTree = new AVLTree();
        // 添加结点
        for (int i = 0; i < arr.length; i++){
            avlTree.add(new Node(arr[i]));
        }
        // 遍历
        System.out.println("中序遍历");
        avlTree.infixOrder();
        System.out.println("平衡~~");
        System.out.println("树的高度="+ avlTree.getRoot().height());
        System.out.println("树的左子树的高度="+avlTree.getRoot().left.height());
        System.out.println("树的右子树的高度="+avlTree.getRoot().right.height());
        System.out.println("当前的根节点="+avlTree.getRoot().toString());
    }
}
class AVLTree{

    private Node root;

    public Node getRoot() {
        return root;
    }

    // 添加节点
    public void add(Node node){
        if (root == null){
            root = node;
        }else{
            root.add(node);
        }
    }
    // 中序遍历
    public void infixOrder(){
        if (root != null){
            root.infixOrder();
        } else {
            System.out.println("当前二叉排序树为空,不能遍历");
            return;
        }
    }
}
class Node {
    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    // 返回以当前结点为根节点的树的高度
    public int height(){
        return Math.max(left == null ? 0 : left.height(), right == null ? 0 :right.height()) + 1;
    }
    // 返回左子树的高度
    public int leftHeight(){
        if (left == null){
            return 0;
        }
        return left.height();
    }
    // 返回右子树的高度
    public int rightHeight(){
        if (right == null){
            return  0;
        }
        return right.height();
    }
    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    // 递归添加,添加节点
    public void add(Node node){
        if (node == null){
            return;
        }
        // 判断传入的节点的值和当前子树的根节点的值的关系
        if (node.value < this.value){
            // 如果当前节点的左子树为空
            if (this.left == null){
                this.left = node;
            } else {
                // 递归的向左子树添加
                this.left.add(node);
            }
        } else {
            if (this.right == null){
                this.right = node;
            } else {
                this.right.add(node);
            }
        }
        // 当添加完一个结点后,如果 右子树的高度 -左子树的高度 > 1
        if (rightHeight() - leftHeight() > 1){
            // 如果右子树的左子树的高度比右子树的左子树的高度要高,先进行一次右旋转
            if (right != null && right.leftHeight() > right.rightHeight()){
                rightRotate();
            }
            leftRotate(); // 左旋转
            return; // 要办然他还要进行一次判断,防止再给转回去
        }
        // 当添加完一个节点后,如果 左子树的高度 - 右子树的高度 > 1
        if (leftHeight() - rightHeight() > 1){
            // 如果左子树的右子树的高度比左子树的左子树的高度高,则先进性一次左旋转
            if (left != null && left.rightHeight() > left.leftHeight()){
                leftRotate();
            }
            rightRotate();
        }
    }
    // 中序遍历
    public void infixOrder(){
        if (this.left != null){
            this.left.infixOrder();
        }
        System.out.print(this.value+"\t");
        if (this.right != null){
            this.right.infixOrder();
        }
    }

    // 左旋转的方法
    private void leftRotate(){
        // 创建新的节点,以当前根节点的值
        Node newNode = new Node(value);
        // 把新的结点的左子树,设置成当前结点的左子树
        newNode.left = left;
        // 把新的结点右子树设置成当前结点的右子树的左子树
        newNode.right = right.left;
        // 把当前结点的值替换成右子树的值
        value = right.value;
        // 把当前结点右子树设置成当前结点右子树的右子树
        right = right.right;
        // 把当前结点的左子树(左子节点)设置成新的结点
        left = newNode;
    }

    // 右旋转
    private  void rightRotate(){
        // 创建新的节点,以当前根节点的值
        Node newNode = new Node(value);
        // 把新节点右子树设置成当前结点的右子树
        newNode.right = right;
        // 把新节点的左子树这支撑当前结点的左子树的右子树
        newNode.left = left.right;
        // 把当前结点的值替换成左子树的值
        value = left.value;
        // 把当前结点的左子树设置成左子树的左子树
        left = left.left;
        // 把当前结点的右子树设置成新结点的右子树
        right = newNode;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值