Numpy 的dot方法使用float比int快,记录笔记

import pandas as pd
import numpy as np
def jaccard(data=None):
    '''
    构建物品相似度矩阵(杰卡德相似系数)
    :param data: 用户物品矩阵,0-1矩阵;行为用户,列为物品
    :return: jaccard相似系数矩阵
    '''
    te = -(data-1)               # 将用户物品矩阵的值反转
    dot1 = np.dot(data.T, data)  # 任意两网址同时被浏览次数
    dot2 = np.dot(te.T, data)    # 任意两个网址中只有一个被浏览的次数(上三角表示前一个被浏览,下三角表示后一个被浏览)
    dot3 = dot2.T+dot2           # 任意两个网址中随意一个被浏览的次数
    cor = dot1/(dot1+dot3)       # 杰卡德相似系数公式
    for i in range(len(cor)):    # 将对角线值处理为零
        cor[i, i] = 0
    return cor

data_train = a1[0:800000]
data_train = data_train.reset_index(drop=True)
data_test = a1[800000:857525].sample(n=5000)
data_test = data_test.reset_index(drop=True)

data_test1 = a1[800000:857525]
data_test1 = data_test1.reset_index(drop=True)
print(data_test)
# data_train.info()
data_train['phone_no'] = data_train['phone_no'].astype('str')    # 将用户id转为字符串类型
data_test['phone_no'] = data_test['phone_no'].astype('str')      # 将用户id转为字符串类型
data_test1['phone_no'] = data_test1['phone_no'].astype('str') 

user_test = data_test['phone_no'].unique().tolist()    # 测试集用户ID

data_train['value'] = 2+test["score"][0:800000]+test["score1"][0:800000]
te = pd.pivot_table(data_train,values='value',index='phone_no', 
                    columns='program_title',fill_value=0)    # 构建用户物品矩阵
# te
print(data_train['value'].sort_index(ascending=True))
corr = jaccard(te) 
corr.shape# 调用自定义函数,计算物品相似度矩阵
corr = pd.DataFrame(corr, index=te.columns, columns=te.columns)
corr
data_train['value'] = 2+test["score"][0:800000]+test["score1"][0:800000]
data_train['value'] = 1

在data_train['value']赋予dataframe和赋值数字,会在jaccard()运算过程中有巨大的差异,前者cpu运行占比较高,内存占用变化明显80w条数据十多二十秒就搞定了,而后者会cpu运行占比低,内存拉高比较慢,速度明显慢。

通过一个个输出测试

问题出在

dot1 = np.dot(data.T, data)

dot2 = np.dot(te.T, data)    

问题出在np.dot上,因为慢的赋值是整数,而且快的是非整数浮点类型,所以有可能是数据格式的问题

Numpy 中似乎有针对 浮点数的优化点运算

int和float类型的Numpy数组dot运算效率比较_sunnyyan的博客-CSDN博客

帖子:

在stackoverflow的一个帖子里找到了原因:

“When Numpy is built with an accelerated BLAS like ATLAS, these functions are replaced to make use of the faster implementations. The faster implementations only affect float32, float64, complex64, and complex128 arrays. Furthermore, the BLAS API only includes matrix-matrix, matrix-vector, and vector-vector products. Products of arrays with larger dimensionalities use the built in functions and are not accelerated.“

原来为了实现更快的计算,Numpy采用了一个类似ATLAS的BLAS(Basic Linear Algebra Subprograms, 基础线性代数子程序)。但这些实现只能影响类型为float32, float64, complex64和complex128的数组。另外,BLAS API只包含矩阵和矩阵,矩阵和向量以及向量和向量的乘法。因此,更高维的数组乘法并不能被加速。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
代码下载:完整代码,可直接运行 ;运行版本:2022a或2019b或2014a;若运行有问题,可私信博主; **仿真咨询 1 各类智能优化算法改进及应用** 生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化 **2 机器学习和深度学习方面** 卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断 **3 图像处理方面** 图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知 **4 路径规划方面** 旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化 **5 无人机应用方面** 无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配 **6 无线传感器定位及布局方面** 传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化 **7 信号处理方面** 信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化 **8 电力系统方面** 微电网优化、无功优化、配电网重构、储能配置 **9 元胞自动机方面** 交通流 人群疏散 病毒扩散 晶体生长 **10 雷达方面** 卡尔曼滤波跟踪、航迹关联、航迹融合

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值