线性代数及矩阵论(五)

线性代数原文 MIT 18.06 线性代数笔记
矩阵论笔记来自 工程矩阵理论
综合线性代数 机器学习的数学基础
配合视频 线性代数 工程矩阵理论

十八、行列式及其性质

本讲我们讨论出行列式(determinant)的性质:

  1. ∣ E ∣ = 1 |E|=1 E=1,单位矩阵行列式值为一。

  2. 交换行,行列式变号。

    在给出第三个性质之前,先由前两个性质可知,对置换矩阵有 ∣ P ∣ = { 1 e v e n − 1 o d d |P|=\begin{cases}1\quad &even\\-1\quad &odd\end{cases} P={11evenodd

    举例: ∣ 1 0 0 1 ∣ = 1 , ∣ 0 1 1 0 ∣ = − 1 \begin{vmatrix}1&0\\0&1\end{vmatrix}=1,\quad\begin{vmatrix}0&1\\1&0\end{vmatrix}=-1 1001=1,0110=1,于是我们猜想,对于二阶方阵,行列式的计算公式为 ∣ a b c d ∣ = a d − b c \begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc acbd=adbc

  3. a. ∣ t a t b c d ∣ = t ∣ a b c d ∣ \begin{vmatrix}ta&tb\\c&d\end{vmatrix}=t\begin{vmatrix}a&b\\c&d\end{vmatrix} tactbd=tacbd,或 ∣ t a b t c d ∣ = t ∣ a b c d ∣ \begin{vmatrix}ta&b\\tc&d\end{vmatrix}=t\begin{vmatrix}a&b\\c&d\end{vmatrix} tatcbd=tacbd

    b. ∣ a + a ′ b + b ′ c d ∣ = ∣ a b c d ∣ + ∣ a ′ b ′ c d ∣ \begin{vmatrix}a+a'&b+b'\\c&d\end{vmatrix}=\begin{vmatrix}a&b\\c&d\end{vmatrix}+\begin{vmatrix}a'&b'\\c&d\end{vmatrix} a+acb+bd=acbd+acbd

    注意这里并不是指 ∣ A + B ∣ = ∣ A ∣ + ∣ B ∣ |A+B|=|A|+|B| A+B=A+B,方阵相加会使每一行相加,这里仅是针对某一行的线性变换。

  4. 如果两行相等,则行列式为零。使用性质2交换两行易证。

  5. 从第 k k k行中减去第 i i i行的 l l l倍,行列式不变。这条性质是针对消元的,我们可以先消元,将方阵变为上三角形式后再计算行列式。

    举例: ∣ a b c − l a d − l b ∣ = 3. b ∣ a b c d ∣ + ∣ a b − l a − l b ∣ = 3. a ∣ a b c d ∣ − l ∣ a b a b ∣ = 4 ∣ a b c d ∣ \begin{vmatrix}a&b\\c-la&d-lb\end{vmatrix}\stackrel{3.b}{=}\begin{vmatrix}a&b\\c&d\end{vmatrix}+\begin{vmatrix}a&b\\-la&-lb\end{vmatrix}\stackrel{3.a}{=}\begin{vmatrix}a&b\\c&d\end{vmatrix}-l\begin{vmatrix}a&b\\a&b\end{vmatrix}\stackrel{4}{=}\begin{vmatrix}a&b\\c&d\end{vmatrix} aclabdlb=3.bacbd+alablb=3.aacbdlaabb=4acbd

  6. 如果方阵的某一行为零,则其行列式值为零。使用性质3.a对为零行乘以不为零系数 l l l,使 l ∣ A ∣ = ∣ A ∣ l|A|=|A| lA=A即可证明;或使用性质5将某行加到为零行,使存在两行相等后使用性质4即可证明。

  7. 有上三角行列式 U = ∣ d 1 ∗ ⋯ ∗ 0 d 2 ⋯ ∗ ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ d n ∣ U=\begin{vmatrix}d_{1}&*&\cdots&*\\0&d_{2}&\cdots&*\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&d_{n}\end{vmatrix} U=d100d20dn,则 ∣ U ∣ = d 1 d 2 ⋯ d n |U|=d_1d_2\cdots d_n U=d1d2dn。使用性质5,从最后一行开始,将对角元素上方的 ∗ * 元素依次变为零,可以得到型为 D = ∣ d 1 0 ⋯ 0 0 d 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ d n ∣ D=\begin{vmatrix}d_{1}&0&\cdots&0\\0&d_{2}&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&d_{n}\end{vmatrix} D=d1000d2000dn的对角行列式,再使用性质3将对角元素提出得到 d n d n − 1 ⋯ d 1 ∣ 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ∣ d_nd_{n-1}\cdots d_1\begin{vmatrix}1&0&\cdots&0\\0&1&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&1\end{vmatrix} dndn1d1100010001,得证。

  8. 当矩阵 A A A为奇异矩阵时, ∣ A ∣ = 0 |A|=0 A=0;当且仅当 A A A可逆时,有 ∣ A ∣ ≠ 0 |A|\neq0 A=0。如果矩阵可逆,则化简为上三角形式后各行都含有主元,行列式即为主元乘积;如果矩阵奇异,则化简为上三角形式时会出现全零行,行列式为零。

    再回顾二阶情况: ∣ a b c d ∣ → 消 元 ∣ a b 0 d − c a b ∣ = a d − b c \begin{vmatrix}a&b\\c&d\end{vmatrix}\xrightarrow{消元}\begin{vmatrix}a&b\\0&d-\frac{c}{a}b\end{vmatrix}=ad-bc acbd a0bdacb=adbc,前面的猜想得到证实。

  9. ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB。使用这一性质, ∣ E ∣ = ∣ A − 1 A ∣ = ∣ A − 1 ∣ ∣ A ∣ |E|=|A^{-1}A|=|A^{-1}||A| E=A1A=A1A,所以 ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}|=\frac{1}{|A|} A1=A1

    同时还可以得到: ∣ A k ∣ = ∣ A ∣ k |A^k|=|A|^k Ak=Ak,以及 ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA n = 3 , k = 2 n=3,k=2 n=3,k=2时这个式子就像是求体积,对三维物体有每边翻倍则体积变为原来的八倍。

  10. ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A,前面一直在关注行的属性给行列式带来的变化,有了这条性质,行的属性同样适用于列,比如对性质2就有“交换列行列式变号”。

    证明: ∣ A T ∣ = ∣ A ∣ → ∣ U T L T ∣ = ∣ L U ∣ → ∣ U T ∣ ∣ L T ∣ = ∣ L ∣ ∣ U ∣ \left|A^T\right|=\left|A\right|\rightarrow\left|U^TL^T\right|=\left|LU\right|\rightarrow\left|U^T\right|\left|L^T\right|=\left|L\right|\left|U\right| AT=AUTLT=LUUTLT=LU,值得注意的是, L , U L, U L,U的行列式并不因为转置而改变,得证。

  11. ∣ A + B ∣ = ∣ ( A + B ) T ∣ = ∣ ( A T + B T ) ∣ |A+B|=|(A+B)^T|=|(A^T+B^T)| A+B=(A+B)T=(AT+BT) (行列式中, A A A A T A^T AT地位一样)

十九、行列式公式和代数余子式

上一讲中,我们从三个简单的性质扩展出了一些很好的推论,本讲将继续使用这三条基本性质:

  1. ∣ E ∣ = 1 |E|=1 E=1
  2. 交换行行列式变号;
  3. 对行列式的每一行都可以单独使用线性运算,其值不变;

我们使用这三条性质推导二阶方阵行列式:

∣ a b c d ∣ = ∣ a 0 c d ∣ + ∣ 0 b c d ∣ = ∣ a 0 c 0 ∣ + ∣ a 0 0 d ∣ + ∣ 0 b c 0 ∣ + ∣ 0 b 0 d ∣ = a d − b c \begin{vmatrix}a&b\\c&d\end{vmatrix}=\begin{vmatrix}a&0\\c&d\end{vmatrix}+\begin{vmatrix}0&b\\c&d\end{vmatrix}=\begin{vmatrix}a&0\\c&0\end{vmatrix}+\begin{vmatrix}a&0\\0&d\end{vmatrix}+\begin{vmatrix}0&b\\c&0\end{vmatrix}+\begin{vmatrix}0&b\\0&d\end{vmatrix}=ad-bc acbd=ac0d+0cbd=ac00+a00d+0cb0+00bd=adbc

按照这个方法,我们继续计算三阶方阵的行列式,可以想到,我们保持第二、三行不变,将第一行拆分为三个行列式之和,再将每一部分的第二行拆分为三部分,这样就得到九个行列式,再接着拆分这九个行列式的第三行,最终得到二十七个行列式。可以想象到,这些矩阵中有很多值为零的行列式,我们只需要找到不为零的行列式,求和即可。

∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = ∣ a 11 0 0 0 a 22 0 0 0 a 33 ∣ + ∣ a 11 0 0 0 0 a 23 0 a 32 0 ∣ + ∣ 0 a 12 0 a 21 0 0 0 0 a 33 ∣ + ∣ 0 a 12 0 0 0 a 23 a 31 0 0 ∣ + ∣ 0 0 a 13 a 21 0 0 0 a 32 0 ∣ + ∣ 0 0 a 13 0 a 22 0 a 31 0 0 ∣ \begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{vmatrix}=\begin{vmatrix}a_{11}&0&0\\0&a_{22}&0\\0&0&a_{33}\end{vmatrix}+\begin{vmatrix}a_{11}&0&0\\0&0&a_{23}\\0&a_{32}&0\end{vmatrix}+\begin{vmatrix}0&a_{12}&0\\a_{21}&0&0\\0&0&a_{33}\end{vmatrix}+\begin{vmatrix}0&a_{12}&0\\0&0&a_{23}\\a_{31}&0&0\end{vmatrix}+\begin{vmatrix}0&0&a_{13}\\a_{21}&0&0\\0&a_{32}&0\end{vmatrix}+\begin{vmatrix}0&0&a_{13}\\0&a_{22}&0\\a_{31}&0&0\end{vmatrix} a11a21a31a12a22a32a13a23a33=a11000a22000a33+a110000a320a230+0a210a120000a33+00a31a12000a230+0a21000a32a1300+00a310a220a1300

原 式 = a 11 a 22 a 33 − a 11 a 23 a 32 − a 12 a 21 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 (1) 原式=a_{11}a_{22}a_{33}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}\tag{1} =a11a22a33a11a23a32a12a21a33+a12a23a31+a13a21a32a13a22a31(1)

同理,我们想继续推导出阶数更高的式子,按照上面的式子可知 n n n阶行列式应该可以分解成 n ! n! n!非零行列式(占据第一行的元素有 n n n种选择,占据第二行的元素有 n − 1 n-1 n1种选择,以此类推得 n ! n! n!): ∣ A ∣ = ∑ n ! ± a 1 α a 2 β a 3 γ ⋯ a n ω , ( α , β , γ , ω ) |A|=\sum_{n!} \pm a_{1\alpha}a_{2\beta}a_{3\gamma}\cdots a_{n\omega}, (\alpha, \beta, \gamma, \omega) A=n!±a1αa2βa3γanω,(α,β,γ,ω)

这个公式还不完全,接下来需要考虑如何确定符号(以列标号为顺序):

∣ 0 0 1 ‾ 1 ‾ 0 1 ‾ 1 ‾ 0 1 ‾ 1 ‾ 0 0 1 ‾ 0 0 1 ‾ ∣ \begin{vmatrix}0&0&\overline 1&\underline 1\\0&\overline 1&\underline 1&0\\\overline 1&\underline 1&0&0\\\underline 1&0&0&\overline 1\end{vmatrix} 0011011011001001

  • 观察带有下划线的元素,它们的排列是 ( 4 , 3 , 2 , 1 ) (4,3,2,1) (4,3,2,1),变为 ( 1 , 2 , 3 , 4 ) (1,2,3,4) (1,2,3,4)需要两次列交换,所以应取 + + +
  • 观察带有上划线的元素,它们的排列是 ( 3 , 2 , 1 , 4 ) (3,2,1,4) (3,2,1,4),变为 ( 1 , 2 , 3 , 4 ) (1,2,3,4) (1,2,3,4)需要一次列交换,所以应取 − -
  • 观察其他元素,我们无法找出除了上面两种以外的排列方式,于是该行列式值为零,这是一个奇异矩阵。

此处引入代数余子式(cofactor)的概念,它的作用是把 n n n阶行列式化简为 n − 1 n-1 n1阶行列式。

于是我们把 ( 1 ) (1) (1)式改写为:

a 11 ( a 22 a 33 − a 23 a 32 ) + a 12 ( a 21 a 33 − a 23 a 31 ) + a 13 ( a 21 a 32 − a 22 a 31 ) a_{11}(a_{22}a_{33}-a_{23}a_{32})+a_{12}(a_{21}a_{33}-a_{23}a_{31})+a_{13}(a_{21}a_{32}-a_{22}a_{31}) a11(a22a33a23a32)+a12(a21a33a23a31)+a13(a21a32a22a31)

∣ a 11 0 0 0 a 22 a 23 0 a 32 a 33 ∣ + ∣ 0 a 12 0 a 21 0 a 23 a 31 0 a 33 ∣ + ∣ 0 0 a 13 a 21 a 22 0 a 31 a 32 0 ∣ \begin{vmatrix}a_{11}&0&0\\0&a_{22}&a_{23}\\0&a_{32}&a_{33}\end{vmatrix}+\begin{vmatrix}0&a_{12}&0\\a_{21}&0&a_{23}\\a_{31}&0&a_{33}\end{vmatrix}+\begin{vmatrix}0&0&a_{13}\\a_{21}&a_{22}&0\\a_{31}&a_{32}&0\end{vmatrix} a11000a22a320a23a33+0a21a31a12000a23a33+0a21a310a22a32a1300

于是,我们可以定义 a i j a_{ij} aij的代数余子式:将原行列式的第 i i i行与第 j j j列抹去后得到的 n − 1 n-1 n1阶行列式记为 C i j C_{ij} Cij i + j i+j i+j为偶时时取 + + + i + j i+j i+j为奇时取 − -

现在再来完善式子 ( 2 ) (2) (2):将行列式 A A A沿第一行展开

∣ A ∣ = a 11 C 11 + a 12 C 12 + ⋯ + a 1 n C 1 n |A|=a_{11}C_{11}+a_{12}C_{12}+\cdots+a_{1n}C_{1n} A=a11C11+a12C12++a1nC1n

到现在为止,我们了解了三种求行列式的方法:

  1. 消元, ∣ A ∣ |A| A就是主元的乘积;
  2. 使用 ( 2 ) (2) (2)式展开,求 n ! n! n!项之积;
  3. 使用代数余子式。

计算例题:
A 4 = ∣ 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 ∣ = 沿 第 一 行 展 开 ∣ 1 1 0 1 1 1 0 1 1 ∣ − ∣ 1 1 0 0 1 1 0 1 1 ∣ = − 1 − 0 = − 1 A_4=\begin{vmatrix}1&1&0&0\\1&1&1&0\\0&1&1&1\\0&0&1&1\end{vmatrix}\stackrel{沿第一行展开}{=}\begin{vmatrix}1&1&0\\1&1&1\\0&1&1\end{vmatrix}-\begin{vmatrix}1&1&0\\0&1&1\\0&1&1\end{vmatrix}=-1-0=-1 A4=1100111001110011=沿110111011100111011=10=1

二十、克莱默法则、逆矩阵、体积

本讲主要介绍逆矩阵的应用。

1.求逆矩阵

我们从逆矩阵开始,对于二阶矩阵有 [ a b c d ] − 1 = 1 a d − b c [ d − b − c a ] \begin{bmatrix}a&b\\c&d\end{bmatrix}^{-1}=\frac{1}{ad-bc}\begin{bmatrix}d&-b\\-c&a\end{bmatrix} [acbd]1=adbc1[dcba]。观察易得,系数项就是行列式的倒数,而矩阵则是由一系列代数余子式组成的。先给出公式:

A − 1 = 1 ∣ A ∣ C T (1) A^{-1}=\frac{1}{|A|}C^T \tag{1} A1=A1CT(1)

观察这个公式是如何运作的,化简公式得 A C T = ∣ A ∣ E AC^T=|A|E ACT=AE,写成矩阵形式有 [ a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] [ C 11 ⋯ C n 1 C 12 ⋯ C n 2 ⋮ ⋱ ⋮ C 1 n ⋯ C n n ] = R e s \begin{bmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\\vdots&\vdots&\ddots&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\end{bmatrix}\begin{bmatrix}C_{11}&\cdots&C_{n1}\\C_{12}&\cdots&C_{n2}\\\vdots&\ddots&\vdots\\C_{1n}&\cdots&C_{nn}\end{bmatrix}=Res a11an1a12an2a1nannC11C12C1nCn1Cn2Cnn=Res

对于这两个矩阵的乘积,观察其结果的元素 R e s 11 = a 11 C 11 + a 12 C 12 + ⋯ + a 1 n C 1 n Res_{11}=a_{11}C_{11}+a_{12}C_{12}+\cdots+a_{1n}C_{1n} Res11=a11C11+a12C12++a1nC1n,这正是上一讲提到的将行列式按第一行展开的结果。同理,对 R e s 22 , ⋯   , R e s n n Res_{22}, \cdots, Res_{nn} Res22,,Resnn都有 R e s i i = ∣ A ∣ Res_{ii}=|A| Resii=A,即对角线元素均为 ∣ A ∣ |A| A

再来看非对角线元素:回顾二阶的情况,如果用第一行乘以第二行的代数余子式 a 11 C 21 + a 12 C 22 a_{11}C_{21}+a_{12}C_{22} a11C21+a12C22,得到 a ( − b ) + a b = 0 a(-b)+ab=0 a(b)+ab=0。换一种角度看问题, a ( − b ) + a b = 0 a(-b)+ab=0 a(b)+ab=0也是一个矩阵的行列式值,即 A s = [ a b a b ] A_{s}=\begin{bmatrix}a&b\\a&b\end{bmatrix} As=[aabb]。将 ∣ A ∣ s |A|_{s} As按第二行展开,也会得到 ∣ A ∣ s = a ( − b ) + a b |A|_{s}=a(-b)+ab As=a(b)+ab,因为行列式有两行相等所以行列式值为零。

推广到 n n n阶,我们来看元素 R e s 1 n = a 11 C n 1 + a 12 C n 2 + ⋯ + a 1 n C n n Res_{1n}=a_{11}C_{n1}+a_{12}C_{n2}+\cdots+a_{1n}C_{nn} Res1n=a11Cn1+a12Cn2++a1nCnn,该元素是第一行与最后一行的代数余子式相乘之积。这个式子也可以写成一个特殊矩阵的行列式,即矩阵 A s = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n − a 1 a n − 12 ⋯ a n − 1 n a 11 a 12 ⋯ a 1 n ] A_{s}=\begin{bmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&\ddots&\vdots\\a_{n-a1}&a_{n-12}&\cdots&a_{n-1n}\\a_{11}&a_{12}&\cdots&a_{1n}\end{bmatrix} As=a11a21ana1a11a12a22an12a12a1na2nan1na1n。计算此矩阵的行列式,将 ∣ A ∣ s |A|_{s} As按最后一行展开,也得到 ∣ A ∣ s = a 11 C n 1 + a 12 C n 2 + ⋯ + a 1 n C n n |A|_{s}=a_{11}C_{n1}+a_{12}C_{n2}+\cdots+a_{1n}C_{nn} As=a11Cn1+a12Cn2++a1nCnn。同理,行列式 A s A_{s} As有两行相等,其值为零。

结合对角线元素与非对角线元素的结果,我们得到 R e s = [ ∣ A ∣ 0 ⋯ 0 0 ∣ A ∣ ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ ∣ A ∣ ] Res=\begin{bmatrix}|A|&0&\cdots&0\\0&|A|&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&|A|\end{bmatrix} Res=A000A000A,也就是 ( 1 ) (1) (1)等式右边的 ( ∣ A ∣ ) E (|A|)E (A)E,得证。

C T C^T CT伴随矩阵 A ∗ A^* A,它与 A − 1 A^{-1} A1只有一个 ∣ A ∣ |A| A常数区别

  • A ∗ A = A A ∗ = ∣ A ∣ E A^*A=AA^*=|A|E AA=AA=AE
  • ( k A ) ∗ = k n − 1 A ∗ (kA)^{*}=k^{n-1}A^{*} (kA)=kn1A
  • ( A B ) ∗ = ( A B ) − 1 ∣ A B ∣ = B − 1 A − 1 ∣ A ∣ ∣ B ∣ = B ∗ A ∗ (AB)^*=(AB)^{-1}|AB|=B^{-1}A^{-1}|A||B|=B^*A^* (AB)=(AB)1AB=B1A1AB=BA
  • ∣ A ∗ ∣ = ∣ ∣ A ∣ A − 1 ∣ = ∣ A ∣ n ∣ A ∣ − 1 = ∣ A ∣ n − 1 |A^*|=||A|A^{-1}|=|A|^n|A|^{-1}=|A|^{n-1} A=AA1=AnA1=An1
  • ( A ∗ ) ∗ = ( ∣ A ∣ A − 1 ) ∗ = ∣ A ∣ n − 1 ( A − 1 ) ∗ = ∣ A ∣ n − 1 ( A ∗ ) − 1 = ∣ A ∣ n − 1 ( ∣ A ∣ A − 1 ) − 1 = ∣ A ∣ n − 2 A (A^*)^*=(|A|A^{-1})^*=|A|^{n-1}(A^{-1})^*=|A|^{n-1}(A^{*})^{-1}=|A|^{n-1}(|A|A^{-1})^{-1}=|A|^{n-2}A (A)=(AA1)=An1(A1)=An1(A)1=An1(AA1)1=An2A
  • ( A − 1 ) T = ( A T ) − 1 (A^{-1})^T=(A^T)^{-1} (A1)T=(AT)1
  • ( A − 1 ) ∗ = ( A ∗ ) − 1 (A^{-1})^*=(A^*)^{-1} (A1)=(A)1
  • ( A ∗ ) T = ( A T ) ∗ (A^{*})^T=(A^T)^{*} (A)T=(AT)

2.求解 A x = b Ax=b Ax=b

因为我们现在有了逆矩阵的计算公式,所以对 A x = b Ax=b Ax=b x = A − 1 b = 1 ∣ A ∣ C T b x=A^{-1}b=\frac{1}{|A|}C^Tb x=A1b=A1CTb,这就是计算 x x x的公式,即克莱默法则(Cramer’s rule)。

现在来观察 x = 1 ∣ A ∣ C T b x=\frac{1}{|A|}C^Tb x=A1CTb,我们将得到的解拆分开来,对 x x x的第一个分量有 x 1 = y 1 ∣ A ∣ x_1=\frac{y_1}{|A|} x1=Ay1,这里 y 1 y_1 y1是一个数字,其值为 y 1 = b 1 C 11 + b 2 C 21 + ⋯ + b n C n 1 y_1=b_1C_{11}+b_2C_{21}+\cdots+b_nC_{n1} y1=b1C11+b2C21++bnCn1每当我们看到数字与代数余子式乘之积求和时,都应该联想到求行列式,也就是说 y 1 y_1 y1可以看做是一个矩阵的行列式,我们设这个矩阵为 B 1 B_1 B1。所以有 x i = ∣ B 1 ∣ ∣ A ∣ x_i=\frac{| B_1|}{|A|} xi=AB1,同理有 x 2 = ∣ B 2 ∣ ∣ A ∣ x_2=\frac{| B_2|}{|A|} x2=AB2 x 2 = ∣ B 2 ∣ ∣ A ∣ x_2=\frac{| B_2|}{|A|} x2=AB2

B 1 B_1 B1是一个型为 [ b a 2 a 3 ⋯ a n ] \Bigg[b a_2 a_3 \cdots a_n\Bigg] [ba2a3an]的矩阵,即将矩阵 A A A的第一列变为 b b b向量而得到的新矩阵。其实很容易看出, ∣ B 1 ∣ |B_1| B1可以沿第一列展开得到 y 1 = b 1 C 11 + b 2 C 21 + ⋯ + b n C n 1 y_1=b_1C_{11}+b_2C_{21}+\cdots+b_nC_{n1} y1=b1C11+b2C21++bnCn1

一般的,有 B j = [ a 1 a 2 ⋯ a j − 1 b a j + 1 ⋯ a n ] B_j=\Bigg[a_1 a_2 \cdots a_{j-1} b a_{j+1} \cdots a_n\Bigg] Bj=[a1a2aj1baj+1an],即将矩阵 A A A的第 j j j列变为 b b b向量而得到的新矩阵。所以,对于解的分量有 x j = ∣ B j ∣ ∣ A ∣ x_j=\frac{|B_j|}{|A|} xj=ABj

这个公式虽然很漂亮,但是并不方便计算。

3.关于体积(Volume)

先提出命题:行列式的绝对值等于一个箱子的体积

来看三维空间中的情形,对于 3 3 3阶方阵 A A A,取第一行 ( a 1 , a 2 , a 3 ) (a_1,a_2,a_3) (a1,a2,a3),令其为三维空间中点 A 1 A_1 A1的坐标,同理有点 A 2 , A 3 A_2, A_3 A2,A3。连接这三个点与原点可以得到三条边,使用这三条边展开得到一个平行六面体, ∣ A ∣ |A| A的绝对值就是该平行六面体的体积。

对于三阶单位矩阵,其体积为 ∣ E ∣ = 1 |E|=1 E=1,此时这个箱子是一个单位立方体。这其实也证明了前面学过的行列式性质1。于是我们想,如果能接着证明性质2、3即可证明体积与行列式的关系。

对于行列式性质2,我们交换两行并不会改变箱子的大小,同时行列式的绝对值也没有改变,得证。

现在我们取矩阵 A = Q A=Q A=Q,而 Q Q Q是一个正交矩阵,此时这个箱子是一个立方体,可以看出其实这个箱子就是刚才的单位立方体经过旋转得到的。对于标准正交矩阵,有 Q T Q = E Q^TQ=E QTQ=E,等式两边取行列式得 ∣ Q T Q ∣ = 1 = ∣ Q T ∣ ∣ Q ∣ |Q^TQ|=1=\left|Q^T\right|\left|Q\right| QTQ=1=QTQ,而根据行列式性质10有 ∣ Q T ∣ = ∣ Q ∣ \left|Q^T\right|=\left|Q\right| QT=Q,所以 原 式 = ∣ Q ∣ 2 = 1 , ∣ Q ∣ = ± 1 原式=\left|Q\right|^2=1, \left|Q\right|=\pm 1 =Q2=1,Q=±1

接下来在考虑不再是“单位”的立方体,即长方体。 假设 Q Q Q矩阵的第一行翻倍得到新矩阵 Q 2 Q_2 Q2,此时箱子变为在第一行方向上增加一倍的长方体箱子,也就是两个“正交箱子”在第一行方向上的堆叠。易知这个长方体箱子是原来体积的两倍,而根据行列式性质3.a有 ∣ Q 2 ∣ = ∣ Q ∣ | Q_2|=|Q| Q2=Q,于是体积也符合行列式的数乘性质。

我们来看二阶方阵的情形, ∣ a + a ′ b + b ′ c d ∣ = ∣ a b c d ∣ + ∣ a ′ b ′ c d ∣ \begin{vmatrix}a+a'&b+b'\\c&d\end{vmatrix}=\begin{vmatrix}a&b\\c&d\end{vmatrix}+\begin{vmatrix}a'&b'\\c&d\end{vmatrix} a+acb+bd=acbd+acbd。在二阶情况中,行列式就是一个求平行四边形面积的公式,原来我们求由四个点 ( 0 , 0 ) , ( a , b ) , ( c , d ) , ( a + c , b + d ) (0,0), (a,b), (c,d), (a+c,b+d) (0,0),(a,b),(c,d),(a+c,b+d)围成的四边形的面积,需要先求四边形的底边长,再做高求解,现在只需要计算 ∣ A ∣ = a d − b c |A|=ad-bc A=adbc即可(更加常用的是求由 ( 0 , 0 ) , ( a , b ) , ( c , d ) (0,0), (a,b), (c,d) (0,0),(a,b),(c,d)围成的三角形的面积,即 1 2 ( a d − b c ) \frac{1}{2}(ad-bc) 21(adbc)。也就是说,如果知道了歪箱子的顶点坐标,求面积(二阶情形)或体积(三阶情形)时,我们不再需要开方、求角度,只需要计算行列式的值就行了。

再多说两句我们通过好几讲得到的这个公式,在一般情形下,由点 ( x 1 , y 1 ) , ( x 2 , y 2 ) , ( x 3 , y 3 ) (x_1,y_1), (x_2,y_2), (x_3,y_3) (x1,y1),(x2,y2),(x3,y3)围成的三角形面积等于 1 2 ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ \frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix} 21x1x2x3y1y2y3111,计算时分别用第二行、第三行减去第一行化简到第三列只有一个 1 1 1(这个操作实际作用是将三角形移动到原点),得到 1 2 ∣ x 1 y 1 1 x 2 − x 1 y 2 − y 1 0 x 3 − x 1 y 3 − y 1 0 ∣ \frac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2-x_1&y_2-y_1&0\\x_3-x_1&y_3-y_1&0\end{vmatrix} 21x1x2x1x3x1y1y2y1y3y1100,再按照第三列展开,得到三角形面积等于 ( x 2 − x 1 ) ( y 3 − y 1 ) − ( x 3 − x 1 ) ( y 2 − y 1 ) 2 \frac{(x_2-x_1)(y_3-y_1)-(x_3-x_1)(y_2-y_1)}{2} 2(x2x1)(y3y1)(x3x1)(y2y1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_森罗万象

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值