从零打造智能导诊助手!让AI帮你找对科室:基于BERT的导诊系统实现

从零打造智能导诊助手!让AI帮你找对科室:基于BERT的导诊系统实现

你是否曾为医院的科室选择而发愁?这篇文章将带你构建一个AI智能导诊助手,只需输入症状描述,它就会精准推荐对应科室!而且,代码完全开箱即用,你可以轻松运行体验,让你的导诊助手在你的设备上“活”起来。

我们将使用BERT模型来识别和理解用户的自然语言输入,并基于症状进行科室推荐。让我们一同探秘这个技术魔法的幕后!


🚀 效果演示

在我们深入代码之前,先看下成品效果(后端简单效果)吧:

用户输入症状描述,智能助手会快速返回推荐的科室:

用户输入:头痛、发烧、咳嗽
系统推荐:内科

用户输入:腹痛、反酸
系统推荐:消化内科

是不是很酷?你只需输入简短的症状描述,系统便能高效、准确地推荐合适的科室!接下来,我们会逐步带你构建这个系统。


🧩 系统架构与实现思路

整个系统分为四个模块:

  1. 数据准备:我们将准备一份症状与科室对应的标注数据。
  2. BERT微调:利用BERT模型的语义理解能力,将症状描述分类到合适的科室。
  3. API接口设计:使用FastAPI构建API,让前端可以调用模型服务。
  4. Docker化部署:将系统打包成Docker镜像,方便部署和分享。

📂 第一步:准备数据

我们先准备一个症状到科室的标注数据集。例如:

症状描述科室
胃痛、反酸、腹胀消化内科
头晕、心悸、胸闷心内科
发烧、咳嗽、喉咙痛内科
皮疹、瘙痒、红肿皮肤科

这些数据将作为我们训练BERT模型的基础,我们会用它来让模型理解不同症状对应的科室。

将这些数据保存为 hospital_data.csv 文件。


⚙️ 第二步:微调BERT模型

我们将利用BERT的强大能力来理解症状描述。你不需要从头训练模型,只需进行微调即可。以下是代码简要:

import pandas as pd
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
import torch
from sklearn.preprocessing import LabelEncoder

# 加载数据
data = pd.read_csv('hospital_data.csv')
X = data['症状描述']
y = data['科室']

# 标签编码
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)

# BERT分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')

# 分词
def tokenize_texts(texts, max_len=128):
    return tokenizer(
        texts.tolist(),
        max_length=max_len,
        padding=True,
        truncation=True,
        return_tensors="pt"
    )

tokens = tokenize_texts(X)

# BERT模型
model = BertForSequenceClassification.from_pretrained("bert-base-chinese", num_labels=len(label_encoder.classes_))

# 训练设置
training_args = TrainingArguments(
    output_dir='./results',
    num_train_epochs=3,
    per_device_train_batch_size=8,
    evaluation_strategy="epoch"
)

# Trainer API
train_dataset = torch.utils.data.TensorDataset(tokens['input_ids'], tokens['attention_mask'], torch.tensor(y_encoded))
trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset)

# 模型训练
trainer.train()

重点:以上代码会在你的数据集上训练一个BERT模型,利用其强大的语义理解能力,完成症状到科室的分类。


🌐 第三步:构建高效API

有了模型后,我们使用FastAPI来创建一个API接口,这样你就可以在任何应用中调用这个导诊助手了!

from fastapi import FastAPI, Request
from transformers import BertTokenizer, BertForSequenceClassification
import torch
import joblib

app = FastAPI()

# 加载模型和标签编码器
model = BertForSequenceClassification.from_pretrained('./results')
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
label_encoder = joblib.load('label_encoder.joblib')

@app.post("/predict")
async def predict(request: Request):
    json_data = await request.json()
    symptoms = json_data['symptoms']
    tokens = tokenizer(symptoms, max_length=128, padding=True, truncation=True, return_tensors="pt")

    with torch.no_grad():
        outputs = model(tokens['input_ids'], attention_mask=tokens['attention_mask'])
        prediction = torch.argmax(outputs.logits, dim=1).item()

    department = label_encoder.inverse_transform([prediction])[0]
    return {"department": department}

快速启动

  1. 将代码保存为 app.py
  2. 使用以下命令运行:
uvicorn app:app --reload --host 0.0.0.0 --port 8000

现在,你可以通过POST请求来调用API:

curl -X 'POST' \
  'http://localhost:8000/predict' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{"symptoms": "头痛、发烧、咳嗽"}'

系统将返回类似如下的结果:

{
  "department": "内科"
}

📦 第四步:Docker化部署

通过Docker容器化,让系统更加便于共享和部署。在不同的环境中都能无缝运行,几行命令即可部署上线。

Dockerfile

FROM python:3.9
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt
EXPOSE 8000
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]

创建requirements.txt

fastapi
torch
transformers
joblib
uvicorn

构建和运行Docker镜像

docker build -t hospital-assistant .
docker run -d -p 8000:8000 hospital-assistant

🎉 项目体验

至此,你的智能导诊助手已经可以在任何地方运行了!不论是本地测试还是云端部署,都能轻松实现。想象一下,把这个智能导诊系统嵌入你的应用中,用户只需输入症状描述,就能获得推荐科室,这将大大改善他们的医疗体验!

是不是很激动?亲自试试吧,享受AI为生活带来的便捷!


更多精彩,敬请关注

在下一篇文章中,我们将进一步优化这个智能导诊助手,包括:

  • 更高效的BERT变种,如RoBERTa和DistilBERT;
  • 添加前端界面,实现更加直观的用户交互;
  • 模型优化和性能提升。

如果你也对智能医疗和NLP充满热情,别忘了关注,更多技术细节等你来发现!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值