算法训练 方格取数

本文介绍了如何使用深度优先搜索(DFS)和动态规划(DP)来解决方格取数的问题。在确保从起点到终点的路径上取数的最大值的情况下,通过两次遍历找到最优解。文中提供了两种方法,一种是基于深度优先搜索的递归解决方案,另一种是利用多线程DP的方法,构建4维动态规划矩阵来跟踪两个人同时走动时的最大值。
摘要由CSDN通过智能技术生成

算法训练 方格取数


问题描述

  设有N*N的方格图(N<=10),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。
  某人从图的左上角的A 点(1,1)出发,可以向下行走,也可以向右走,直到到达右下角的B点(N,N)。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
  此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入格式
  输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出格式
只需输出一个整数,表示2条路径上取得的最大的和。
样例输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
样例输出
67

方法一:

思路:
从题意中我们可以知道这是一个像迷宫类型的题型,但我们可以知道题要求的是我们求出我们取出数值到终点的最大值,在这基础上是走2遍,然后把2遍取的方格数的和要最大值.那么我们可以先考虑用深层递归来求解。我们首先可以把从起点到终点模拟走完一次让在进入函数走一次,我们把所有可能全部走一次然后把最大值输出。
注意:我们第一次走的时候取的方格数要把他成为0,退回时记得回溯。
程序:

n=int(input())
a=[[0 for i1 in range(n+1)]for i in range(n+1)]
v=1
X=0
Y=0
while(v!=0):  #XY  表示最大的x坐标和y坐标范围有值超过此范围的值都是0 用于走不必要的程序
    v,v1,m=map(int,input().split())
    X=v  if  X<v else  X
    Y=v1 if  Y<v1 else  Y
    a[v][v1]=m
con=0
def bfs(x,y,su,f)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值